

Universidad de San Carlos de Guatemala Escuela de Ciencias Físicas y Matemáticas Departamento de Física

DISPERSIÓN DE FOTONES DE BAJAS ENERGÍAS EN ELEMENTOS LIGEROS

Edgar Andrés Monterroso Urrutia

Asesorado por Lic. José Diego Alejandro Gómez Vargas

Guatemala, mayo de 2017

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICAS

DISPERSIÓN DE FOTONES DE BAJAS ENERGÍAS EN ELEMENTOS LIGEROS

TRABAJO DE GRADUACIÓN PRESENTADO A LA JEFATURA DEL DEPARTAMENTO DE FÍSICA POR

EDGAR ANDRÉS MONTERROSO URRUTIA ASESORADO POR LIC. JOSÉ DIEGO ALEJANDRO GÓMEZ VARGAS

AL CONFERÍRSELE EL TÍTULO DE LICENCIADO EN FÍSICA APLICADA

GUATEMALA, MAYO DE 2017

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICAS

CONSEJO DIRECTIVO

DIRECTOR

M.Sc. Edgar Anibal Cifuentes Anléu

SECRETARIO ACADÉMICO Ing. José Rodolfo Samayoa Dardón

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

EXAMINADOR	Ing. Walter Geovanny Alvarez
EXAMINADOR	Lic. Juan Diego Chang
EXAMINADOR	Dr. Juan Ponciano Castellanos

Universidad de San Carlos de Guatemala Escuela de Ciencias Físicas y Matemáticas

Ref. D.DTG. 003-2017 Guatemala 08 de mayo de 2017

El Director de la Escuela de Ciencias Físicas y Matemáticas de la Universidad de San Carlos de Guatemala, luego de conocer la aprobación por parte del Coordinador de la Licenciatura en Física Aplicada, al trabajo de graduación Titulado: **Dispersión de fotones de bajas energías en elementos ligeros** presentado por el estudiante universitario **Edgar Andrés Monterroso Urrutia**, autoriza la impresión del mismo.

IMPRIMASE.

MsC. Edgar Aníbal Cifuer Director Escuela de Ciencias Físicas y Matemáticas

EC/pec

AGRADECIMIENTOS

A mis Padres

A mi padre el Ing. Edgar Nehemias Monterroso Pérez (Q.E.P.D) por que durante el tiempo que estuvo a nuestro lado, nos inculco a mis hermanos y a mi, el siempre seguir adelante, el jamas rendirnos y despertó en mi, la curiosidad por entender la naturaleza. A mi madre la Licda. Delia Marisol Urrutia Villeda de Monterroso por que nos enseño a siempre respetar nuestros valores sin importar la situación, por permitirme el lujo de estudiar una carrera tan fascinante como lo es la física, y en especial por siempre apoyarme y alentarme a seguir mis sueños.

A mis Abuelos

Ing. Nehemias Monterroso Salvatierra, Zoila Lidia Pérez Mazariegos, Rosa Delia Villeda Lemus (Q.E.P.D) y Sarbelio Antonio Urrutia Osorio (Q.E.P.D) por su amor durante mi infancia, su paciencia durante mi adolescencia, y su apoyo incondicional durante toda su vida.

A mis Hermanos

José Pablo, Juan Daniel y Guillermo Javier, así como a mis hermanos de otra madre, David Solis, Brian Linares y Alexander Rojas. A todos por su amistad, consejos, apoyo incondicional y por sobre todo, el estar a mi lado en mis momentos mas sombríos y ayudarme a seguir adelante.

A mis amigos

Quienes hicieron de mis años de estudiante, los mejores años de mi vida. Y en Especial a la Srta. Ana del Milagro por su cariño y amistad.

Al Resto de mi familia

Quienes a su particular manera me apoyaron y que por falta de espacio no nombro.

A mis Profesores

De la Universidad por todo el conocimiento. Del Colegio, que con su paciencia y afecto ayudaron a formar el hombre que soy ahora, en especial a mi profesor de física fundamental Prof. Oscar Jop por ayudarme a ver lo hermosa que es la naturaleza y a querer tratar de entenderla. Y al Prof. Felipe Contreras por sus consejos durante una de las épocas mas duras de mi vida.

DEDICATORIA

A mi madre, la mamá de los famosos. Por que este trabajo es la culminación de años de esfuerzo y sacrificio.

«...para dedicarse en cuerpo y alma a encontrar el camino por el cual la inventiva milagrosa del hombre no sea dedicada a su muerte, sino consagrada a su vida».

- Dwight D. Eisenhower, final del discurso pronunciado en la 470° Asamblea General de la ONU. Nueva York, 8 de diciembre 1953.

ÍNDICE GENERAL

ÍNDICE DE FIGURAS			VI
ÍNDICE DE TABLAS		V	'III
LISTA DE SÍMBOLOS			IX
GLOSARIO			XI
OBJETIVOS		Х	
INTRODUCCIÓN			xv
1. Conceptos Fundamentales de las Radiaciones Ionizantes			1
1.1. Protección radiológica	•		1
1.2. Atenuación exponencial			2
1.2.1. Atenuación exponencial simple	•		2
1.2.2. At enuación exponencial para modos plurales de absorción $\ .$.	•		3
1.3. Geometría de haz estrecho	•	•	4
1.4. Eficiencia de detección			5
1.5. Espectroscopía gamma			$\overline{7}$
1.5.1. Distribución de Lorentz			$\overline{7}$
1.5.2. Resolución energética			8
1.6. Efecto Compton			9
1.6.1. Cinemática del Efecto Compton			9
1.6.2. Sección eficaz para Efecto Compton	•	•	11
2. Diseño Experimental			13
2.1. Equipos	•		13
2.1.1. Colimadores \ldots	•		13
2.1.2. Dispersor	•		14

2.1.3.	Dispositivo de angulación	14
2.1.4.	Equipo de detección	14
2.1.5.	Equipos de radioprotección $\hfill \ldots \hfill \ldots \$	14
2.1.6.	Filtros	15
2.1.7.	Fuente de rayos gamma	15
2.2. Diag	ramas y planos	16
2.3. Anál	isis espectral \ldots	19
2.3.1.	Adquisición de datos	19
2.3.2.	Procesamiento de datos	20
3. Dispers	ión de Fotones de Bajas Energías en Elementos Ligeros	25
3.1. Mod	elo para la dispersión de los fotones	25
3.1.1.	Àngulo sólido subtendido por una fuente cilíndrica, coaxial y pa- ralela sobre un disco	26
3.1.2.	Ángulo sólido subtendido por dos cilindros cuyos ejes axiales son	
	perpendiculares	31
3.2. Mod	elo para la interacción de los fotones dispersos con el material detector	34
3.2.1.	Atenuación de los rayos gamma en el dispersor, $\eta(E)$	35
3.2.2.	Eficiencia del detector de NaI(Tl), $\epsilon(E)$	37
3.2.3.	Razón pico-total, $P(E)$	37
4. Resulta	dos	41
4.1. Verif	icación y cuantificación de la energía del fotón disperso en el Efecto	
Com	pton	41
4.2. Verif	icación de la variación de la energía respecto al ángulo de dispersión	
del E	fecto Compton y obtención de la energía de la masa en reposo del	49
electi	$\mathbf{ron} \cdot \cdot$	42
4.3. Verif	leacion de la proporcionalidad entre el numero de conteos en el	4.4
	reién de negultades	44
4.4. Disci		40
CONCLU	SIONES	47
RECOME	NDACIONES	49
BIBLIOG	RAFÍA	51

APÉNDICE

APÉNDICE	55
A.1. Sobre la Protección Radiológica	55
A.1.1. Determinación de la peligrosidad de la fuente	55
A.1.2. Sobre la manipulación segura de fuentes radiactivas	56
A.2. Coeficientes totales de atenuación	57
A.2.1. Coeficiente de atenuación Pb	57
A.2.2. Coeficiente de atenuación Al \ldots	58
A.2.3. Coeficiente de atenuación $NaI(Tl)$	58
A.3. Determinación del tamaño de campo del haz colimado de radiación a	
$0.30~{\rm m}$ de distancia \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	59
A.4. Análisis de incertezas	61
A.5. Criterios para el análisis espectral	61
A.5.1. Criterio de la información de Akaike	62
A.5.2. Criterio de selección del ancho del foto-pico	62
A.5.2.1. Cálculo de la constante K , de la ecuación (1.15), para el	
$NaI(Tl)$ y análisis del espectro de referencia del ^{137}Cs	62
A.6. Datos espectrales	65
A.6.1. Coeficientes obtenidos para la función $S(E)$ de los espectros a	
$55.8^{\circ}, 65.8^{\circ}, 75.8^{\circ}, 90.8^{\circ} \text{ y } 120.8^{\circ} \dots \dots \dots \dots \dots \dots \dots \dots$	72

ÍNDICE DE FIGURAS

1.1.	Atenuación exponencial simple	2
1.2.	Geometría de haz estrecho	5
1.3.	Pico de energía completa	6
1.4.	Cinemática efecto Compton	10
2.1.	Colimador(es). 	13
2.2.	Dispositivo de angulación.	14
2.3.	Equipos varios para la radioprotección	15
2.4.	Vista esquemática de la fuente de $^{137}\mathrm{Cs},$ modelo CSM-3	15
2.5.	Espectrómetro de mano, identi FINDER Ultra	16
2.6.	Diagrama colimadores	16
2.7.	Diagrama del dispositivo de angulación	17
2.8.	Plano disposición final de la geometría del experimento	18
2.9.	Centro geométrico del colimador y ubicación de la fuente dentro del	
	mismo	21
2.10.	Comparación de las cuentas totales contra la función ${\rm S}({\rm E})$ del espectro	
	a 30.8° de angulación	23
3.1.	Volumen iluminado del dispersor, debido al haz colimado de radiación.	26
3.2.	Geometría para un sistema conformado por una fuente de disco, pa-	
	ralela y coaxial, a un disco detector	27
3.3.	Geometría simplificada para el problema de los cilindros en posición	
	asimétrica.	32
3.4.	Geometría para el cálculo del ángulo sólido subtendido por un rec-	
	tángulo en un punto.	33
3.5.	Geometría para el cálculo del ángulo sólido subtendido por un rec-	
	tángulo en un punto arbitrario	34
3.6.	Diagrama de la geometría de la dispersión Compton	36

Comparación entre la energía esperada y la obtenida experimental-	
mente del fotón disperso debido al Efecto Compton	42
Linearización de la ecuación de dispersión del Efecto Compton	43
Visualización de los ajustes a la distribución de Lorentz, de los datos	
de los foto-picos debido al efecto de dispersión de Compton	44
Mejor ajuste entre el número de fotones dispersor en una unidad de	
ángulo sólido $d(e\sigma)/d\Omega$ en un ángulo promedio de dispersión θ y las	
cuentas medidas en el foto-pico con sus factores de corrección	45
Símbolo recomendado por el OIEA cuando se está en presencia de	
radiaciones ionizantes.	56
Principio ALARA.	57
Imagen del tamaño de campo del haz colimado de radiación a 0.30 m .	60
Imagen del error sistemático del colimador	60
Comparación de las cuentas totales contra la función $S(E)$ del espectro	
de referencia.	64
Comparación de las cuentas totales contra la función $S(E)$ del espectro	
a 55.8° de angulación	75
Comparación de las cuentas totales contra la función $S(E)$ del espectro	
a 65.8° de angulación	76
Comparación de las cuentas totales contra la función $S(E)$ del espectro	
a 75.8° de angulación	77
Comparación de las cuentas totales contra la función $S(E)$ del espectro	
a 90.8° de angulación	78
Comparación de las cuentas totales contra la función $S(E)$ del espectro	
a 120.8° de angulación. \ldots	79
	Comparación entre la energía esperada y la obtenida experimental- mente del fotón disperso debido al Efecto Compton Linearización de la ecuación de dispersión del Efecto Compton

ÍNDICE DE TABLAS

2.1.	Valores de CIA_p utilizados para determiar el grado optimo del polino-	
	mio para el ajuste de ${\rm F}({\rm E})$ para los espectro de todas las angulaciones.	22
2.2.	Coeficientes obtenidos para la función ${\rm S(E)}$ del espectro a 30.8° de	
	angulación	24
2.3.	Cuentas $C(E)$ en los foto-pico	24
3.1.	Valores de $f(E)$ para la razón pico-total, datos tomados de Vegors &	
	et al, Ref. [29].	38
3.2.	Valores de angulación con su respectiva energía, atenuación de rayos	
	gamma en el dispersor, eficiencia del detector de NaI(Tl) y razón	
	pico-total del detector de NaI(Tl).	39
3.3.	Proporcionalidad de la sección eficaz diferencial de Klein-Nishina y	
	las cuentas $C(E)$, medidas en el foto-pico	39
4.1.	Comparación entre la energía esperada y la obtenida experimental-	
	mente del fotón disperso debido al Efecto Compton	41
4.2.	Valores de la linearización de la ecuación de dispersión del Efecto	
	Compton	43
4.3.	Comparación entre las cuentas corregidas del foto-pico contra la sec-	
	ción eficaz diferencial de Klein-Nishina con el factor k que produce el	
	mejor ajuste en la ecuación (3.39)	44
A.1.	Factores a_i de la regresión polinomial utilizados para obtener el coe-	
	ficiente de atenuación del Pb en función de la energía.	57
A.2.	Coeficientes de atenuación del Pb para interacciones con fotones	58
A.3.	Factores a_i de la regresión polinomial utilizados para obtener el coe-	
	ficiente de atenuación del Al en función de la energía	58
A.4.	Coeficientes de atenuación del Al para interacciones con fotones	58
A.5.	Factores a_i de la regresión no lineal utilizados para obtener el coefi-	
	ciente de atenuación del NaI(Tl) en función de la energía. \ldots \ldots	59

A.6.	Coeficientes de atenuación del NaI(Tl) para interacciones con fotones	59
A.7.	Resultados de las radiografías del tamaño de campo del haz de radia-	
	ción tomadas a 0.30 m de distancia	61
A.8.	Coeficientes obtenidos de la regresión polinomial de la funcion $S(E)$	
	del espectro de referencia	63
A.9.	Datos obtenidos de los espectros luego de sustraer el fondo natural	
	radiactivo. Se toman en consideración los errores sistemáticos de los	
	equipos.	65
A.10	Coeficientes obtenidos para la función ${\rm S(E)}$ del espectro a $55.8^{\rm o}$ de	
	angulación	72
A.11	Coeficientes obtenidos para la función ${\rm S(E)}$ del espectro a $65.8^{\rm o}$ de	
	angulación	72
A.12	Coeficientes obtenidos para la función ${\rm S}({\rm E})$ del espectro a $75.8^{\rm o}$ de	
	angulación	73
A.13	Coeficientes obtenidos para la función ${\rm S(E)}$ del espectro a $90.8^{\rm o}$ de	
	angulación	73
A.14	Coeficientes obtenidos para la función ${\rm S(E)}$ del espectro a 120.8° de	
	angulación	74

LISTA DE SÍMBOLOS

Símbolo	Significado
A	Peso molecular.
A_p	Área total bajo la curva de la Distribución de Lorentz.
C(E)	Cuentas en el foto-pico.
CIA_p	Criterio de la información de Akaike.
μ, ω, eta	Coeficientes de atenuación lineal.
Ø	Diámetro.
Δ_{fp}	Ancho del foto-pico.
ΔE_H	Diferencia entre el canal Cn_i y Cn_{i+1} del tubo fotomultiplicador.
E	Energía del fotón disperso.
E_0	Energía del fotón incidente.
e^-	Electrón.
$\epsilon(E)$	Eficiencia del detector.
$\eta(E)$	Atenuación de rayos gamma en el dispersor.
F(E)	Función ruido de fondo.
Φ	Diámetro.
g	Fotones por unidad de área por segundo.
γ	fotón.
Γ	Ancho total a media altura, F.W.H.M.
Ι	Eficiencia geométrica.
$N_{(\theta)}$	Fotones dispersos un ángulo θ .
N_A	Número de Avogadro.
N_p	Eventos/cuentas en el foto-pico.
Ω	Ángulo sólido.
P(E)	Razón pico-total.
$p_L(E)$	Función de densidad de la distribución normalizada de Lorentz.
R	Resolución energética.
r_e	Radio clásico del electrón.

Símbolo	Significado
ρ	Densidad.
S(E)	Función analítica asociada a los espectros, sin procesar, que se están
	analizando.
σ^s	Sección eficaz de dispersión.
$_e\sigma$	Sección eficaz total por electrón.
θ	Ángulo de dispersión del fotón.
V	Volumen.
Ζ	Número atómico.

GLOSARIO

• Becquerel (Bq): es la unidad de actividad radiactiva aceptada por el Sistema Internacional de Unidades. Un becquerel se define como la actividad de una cantidad de material radiactivo con decaimiento de un núcleo por segundo. Equivale a una desintegración nuclear por segundo.

$$1 \text{ Ci} = 3.7 \times 10^{10} \text{ Bq} = 37 \text{ GBq}$$

- Castillo [plomado]: en este caso, blindaje para aislar el espectrómetro.
- Curie (Ci): originalmente definida como el número de desintegraciones por segundo que ocurren en una masa de 1 g de $^{226}_{88}$ Ra. Luego esta definición fue separada de la masa del Ra, y fue establecida igual a 3.7×10^{10} Bq.
- E.R.I: Error Relativo Intrínseco, error relativo de una medida respecto a una magnitud especificada de referencia.
- Espectro: Forma visual de representar algún comportamiento en particular de la materia. En física nuclear, un histograma de distribución de frecuencia de conteos vrs. energía, o conteos vrs. No.Canal.
- Foto-pico: Es el pico formado cuando el fotón logra depositar toda su energía en el material detector.
- Fotón: Cuanto de luz.
- Fuente: La Comisión Internacional de Protección Radiológica utiliza el término «fuente» para indicar cualquier entidad física o procedimiento que da lugar a dosis de radiación potencialmente cuantificables en una persona o grupo de personas.
- F.W.H.M: Por sus siglas en inglés: Full Width at Half Maximum. Es el ancho total a media altura, parámetro utilizado para caracterizar cantidades "elec-

trónicas" variables. En un gráfico V vrs.
t, es el ancho de la función calculado en V(t)=
 V_{max} / 2.

- Polucita: Un raro mineral incoloro que consiste en un silicato de aluminio de cesio hidratado, a menudo contiene algo de rubidio. Ocurre en granito grueso, especialmente en Manitoba, y es una importante fuente de cesio. Fórmula química Cs(Si₂Al)O₆·H₂O.
- **Protección radiológica:** Es un término general aplicado a la protección de la gente y el medio ambiente de los efectos dañinos de las radiaciones ionizantes.
- Seguridad tecnológica de las fuentes radiactivas: Medidas destinadas a reducir al mínimo la probabilidad de accidentes ocasionados por fuentes radiactivas y, de ocurrir ese tipo de accidente, a mitigar sus consecuencias.
- Tacho (plomado): Recipiente destinado al almacenamiento de la fuente radiactiva.
- Vida media: Tiempo en el cual el número de elementos radiactivos ha decrecido a la mitad de su valor original.

OBJETIVOS

General

Realizar una investigación en el área de la física nuclear: uso de espectroscopia gamma en el análisis de la interacción de la radiación con la materia, así como las técnicas experimentales y procedimientos para la medición e interpretación de las distribuciones energéticas de los rayos gamma.

Específicos

- 1. Verificar y cuantificar la energía del fotón dispersado en el Efecto Compton por la técnica de espectroscopia gamma.
- 2. Verificar que la variación de la energía con el ángulo de dispersión en el Efecto Compton, es una relación inversa y no lineal.
- 3. Determinar la energía de la masa del electrón en reposo.
- 4. Verificar la proporcionalidad entre el número de conteos en el detector y la sección eficaz diferencial de Klein-Nishina del dispersor.

INTRODUCCIÓN

El presente trabajo se centra en el desarrollo experimental de unos de los trabajos más reconocidos del científico Arthur Holly Compton quien en 1923 realizó dos publicaciones: «A Quantum Theory of the Scattering of X-Rays by Light Elements», y «The Spectrum of Scattered X-Rays». En las cuales sugiere:

«La hipótesis sugerida es que cuando un cuanto de rayos x es dispersado gasta toda su energía y momentum en algún electrón en particular. Y este electrón dispersa el rayo en una dirección definida. El cambio en el momentum del cuanto de rayos x, debido a el cambio en la dirección de propagación da como resultado un retroceso en el electrón disperso. La energía en el cuanto disperso es, por lo tanto, menor que la del cuanto primario debido a la energía cinética de retroceso del electrón disperso.»

Este descubrimiento representó para Compton la culminación de muchos años de estudios teóricos y experimentales, que lo llevo a hacerse acreedor del premio Nobel en 1927. Las implicaciones del efecto Compton van mas allá de solamente cuantificar la dispersión del fotón, ya que también se ve involucrada la sección eficaz de captura del material que se está irradiando.

Por lo anteriormente mencionado, en este trabajo se comienza con el desarrollo de ciertos conceptos básicos necesarios para el entendimiento de la técnica de espectroscopía gamma, misma que se utilizó para el análisis de los datos y a la vez, conceptos claves del efecto Compton y de la sección eficaz diferencial de Klein-Nishina. Se presenta una lista de los equipos utilizados, los esquemáticos de los equipos que se volvió imperativo construir y de la disposición de los equipos para poder llevar acabo el experimento. Por último, pero no menos importante, los procedimientos para la adquisición y análisis de datos. Luego se detalla el desarrollo de la teoría que sustenta en si el experimento. Se propone un modelo analítico de la dispersión de los fotones en la materia y un modelo experimental el cual incluye las correcciones necesarias debido a las características del material detector. Finalmente, se comparan ambos modelos. De la comparación de estos modelos surge la posibilidad de relacionar las cuentas en el foto-pico con la sección eficaz diferencial de Klein-Nishina.

1. Conceptos Fundamentales de las Radiaciones Ionizantes

1.1. Protección radiológica

La protección radiológica puede dividirse en protección radiológica ocupacional, la cual se encarga de la protección de los trabajadores en situaciones en las que su exposición está directamente relacionada o requerida por su trabajo. La protección radiológica médica, que se encarga de la protección de los pacientes expuestos a radiación como parte de su tratamiento o diagnóstico; y la protección radiológica al público, que se encarga de la protección de los miembros individuales del público y de la población en general.

En todas las situaciones que involucren una exposición a la radiación, un nivel apropiado de protección radiológica debe ser aplicado utilizando un enfoque gradual, i.e. el nivel de control aplicado debe ser adecuado al riesgo o riesgos asociados.

Con el fin de poder aplicar el enfoque gradual, es necesario poder establecer la categoría de peligrosidad de la fuente radiactiva que se va a utilizar, para esto se debe de utilizar la Guía de seguridad No. RS-G-1.9 (ver Ref. [19]). Realizando los cálculos correspondientes se obtiene que la fuente es de categoría cuatro, «*Improbable que sea peligrosa para las personas:* Es muy improbable que esta fuente lesione permanentemente a alguien. Ahora bien, esta cantidad de material radiactivo no blindado, si no se maneja en condiciones de seguridad tecnológica o no se protege con seguridad desde punto de vista físico, acaso podría -si bien seria improbable- lesionar temporalmente a quien la manipulara o estuviera en contacto con ella durante muchas horas, o que se hallase cerca de ella durante un periodo de muchas semanas.» (RS-G-1.9 OIEA, 2009, p. 33).

En función de la categoría de la fuente, se elaboró un procedimiento para la

manipulación de la fuente, donde se trata de minimizar el tiempo de exposición. Este procedimiento se detalla en la sección 2.3.1.

1.2. Atenuación exponencial

La atenuación exponencial es un concepto relevante principalmente para radiaciones ionizantes sin carga (i.e. fotones y neutrones), las cuales pierden su energía en unas pocas interacciones relativamente grandes.

Una partícula individual no cargada tiene una probabilidad significativa de pasar sin llevar a cabo una interacción a través de un material. Tampoco tiene un «alcance» límite el cual no pueda superar, al pasar a través de la materia.

1.2.1. Atenuación exponencial simple

Considérese un haz monoenergético y paralelo, el cual consiste de un número muy grande N_0 de partículas sin carga que inciden perpendicularmente en una placa plana de material con un grosor L, como se ve en la figura 1.1. Se asume para este caso ideal que cada partícula es completamente absorbida en una sola interacción, sin producir radiación secundaria, o pasa a través de la placa entera sin cambiar su energía o dirección.

Figura 1.1. Atenuación exponencial simple. Fuente: imagen tomada de Ref. [2, p. 39].

Sea μ la probabilidad de que una partícula individual interactúe en una unidad de espesor de material atravesado. Entonces la probabilidad de que interactúe en un espesor infinitesimal dl es $\mu \cdot dl$. Si N partículas inciden en dl, el cambio dN en el número N debido a absorción está dado por

$$dN = -\mu N \ dl \tag{1.1}$$

donde μ usualmente está dado en unidades de cm^{-1} o m^{-1} y dl está dado en unidades de cm o m.

La razón de cambio en N debido a la absorción de partículas en dl es

$$\frac{dN}{N} = -\mu \ dl \tag{1.2}$$

integrando el espesor l, des
de 0 hasta Ly la correspondiente población de partículas des
de N_0 hasta N_L da

$$\frac{N_L}{N_0} = e^{-\mu L} \tag{1.3}$$

Esta es la ley de atenuación exponencial, que aplica para el caso ideal descrito anteriormente (absorción simple, no dispersión ó radiación secundaria), o cuando partículas secundarias o dispersas sean producidas pero no se cuenten en N_L .

La cantidad μ es llamada el *coeficiente lineal de atenuación*, o simplemente el coeficiente de atenuación. Cuando se divide dentro de la densidad ρ del medio de atenuación, se obtiene el coeficiente de atenuación másico μ/ρ (cm²/g ó m²/kg). μ también es conocido como «coeficiente de atenuación de geometría de haz estrecho».

1.2.2. Atenuación exponencial para modos plurales de absorción

Supóngase que en el caso precedente existe mas de un proceso de absorción (i.e. varios materiales o diferentes tipos de interacciones), por lo tanto, el coeficiente lineal de atenuación total μ es:

$$\mu = \mu_1 + \mu_2 + \mu_3 + \dots$$

$$1 = \frac{\mu_1}{\mu} + \frac{\mu_2}{\mu} + \frac{\mu_3}{\mu} + \dots$$
(1.4)

donde μ_i es el *coeficiente de atenuación lineal parcial* para el proceso *i*. La intensidad de las interacciones realizadas por un proceso *x* es

$$\frac{N_x}{N_0} = (1 - e^{-\mu L}) \frac{\mu_x}{\mu}$$
(1.5)

donde μ_x/μ es la fracción de interacciones que realizó el proceso x.

1.3. Geometría de haz estrecho

Si las partículas secundarias y dispersas no cargadas, llegan al detector, pero en N_L solo se cuentan las primarias, se tiene geometría de haz amplio pero atenuación de haz estrecho, como consecuencia la ecuación (1.3) sigue siendo válida bajo estas condiciones, inclusive en el caso de un haz real de radiación primaria sin carga.

Existen dos métodos generales para alcanzar la atenuación de haz estrecho:

- *Discriminación* de todas las partículas dispersas y secundarias que logran alcanzar al detector, en función de la energía de las partículas, habilidad de penetración, dirección, coincidencia, anti-coincidencia, etc.
- *Geometría de haz estrecho*, la cual impide a cualquier partícula dispersa o secundaria de alcanzar el detector.

En la figura 1.2 el detector se coloca lo suficientemente lejos de las capas de atenuación, de modo que cualquier partícula *S* que sea desviada debido a una interacción, no logre alcanzar al detector. El haz es colimado de tal forma que cubre al detector de manera uniforme, minimizando de este modo, el número de partículas dispersas o secundarias generadas en el atenuador. La fuente del haz de radiación se coloca lo suficientemente lejos del atenuador de tal forma que las partículas incidan casi perpendiculares. Además, la intensidad del haz primario en el detector, será casi independiente de la distancia, mientras que la intensidad de las partículas secundarias disminuirá con el cuadrado de la distancia. No es difícil en la práctica alcanzar de manera aceptable una geometría de haz estrecho de forma experimental y, por lo tanto, obtener una buena aproximación de la atenuación de haz estrecho, tal y como se requiere.

Mientras más pequeño el ángulo sólido subtendido de la fuente del haz de radiación hacia al detector, más pobre será el «acoplamiento» entre ambos, y por ende,

Figura 1.2. Geometría de haz estrecho. El detector se coloca lo suficientemente lejos del atenuador, de tal forma que las partículas dispersas o secundarias (S) que alcanzan el detector, sean despreciables en comparación con el número de rayos primarios. Fuente: imagen tomada de Ref. [2, p. 43].

será menor la cantidad de radiación dispersa que alcanza el detector.

Las partículas secundarias y dispersas, no cargadas, pueden o no contarse en N_L . Si se toman en cuenta, entonces la ecuación (1.3) resulta inválida en describir la variación N_L vs. L, debido a la violación de la suposición de que solo eventos simples de absorción pueden ocurrir. Lo anterior se conoce como Geometría de haz amplio.

1.4. Eficiencia de detección

Es conveniente dividir la eficiencia de conteos en dos clases: *absoluta* e *intrínseca*. La absoluta se define como

$$\epsilon_{abs} = \frac{\text{número de pulsos registrados}}{\text{número de quantos de radiación emitidos por la fuente}}$$
(1.6)

 ϵ_{abs} es dependiente de las propiedades del detector, así como también lo es de la geometría de conteo (primordialmente de la distancia de la fuente al detector). La eficiencia intrínseca se define como

$$\epsilon_{int} = \frac{\text{número de pulsos registrados}}{\text{número de quantos de radiación que inciden en el detector}}$$
(1.7)

y no incluye el ángulo sólido subtendido en el detector como un factor implícito. Las dos eficiencias se relacionan para fuentes isotrópicas por medio de

$$\epsilon_{int} = \epsilon_{abs} \cdot \left(\frac{4\pi}{\Omega}\right) \tag{1.8}$$

donde Ω es el ángulo sólido del detector visto desde la posición actual de la fuente. La eficiencia de conteos también está caracterizada por la naturaleza de los eventos registrados. Si se aceptan todos los pulsos del detector, entonces es apropiado usar la eficiencia total. En este caso todas la interacciones son tomadas en cuenta, sin importar que tan baja energía tengan. La eficiencia de pico, toma en cuenta solo las interacciones que depositaron completamente la energía de la radiación incidente.

Figura 1.3. Pico de energía completa. Toda el área bajo el espectro es una medida de todos los pulsos que se registraron, eficiencia total. El área ashurada es una medida de los pulsos que depositaron completamente su energía, eficiencia de pico. Fuente: imagen tomada de Ref. [11, p. 117].

Se asume que un detector con una eficiencia intrínseca de pico ϵ_{ip} se utilizó para registrar N eventos en el pico de energía completo en el espectro del detector. También que la fuente emite isotrópicamente. De la definición de eficiencia intrínseca de pico, el número de quantos de radiación N_0 emitidos por la fuente durante el periodo de medición, está dado por

$$N_0 = N \frac{4\pi}{\epsilon_{ip}\Omega} \tag{1.9}$$

donde Ω representa el ángulo sólido subtendido por el detector a la posición de la fuente.

1.5. Espectroscopía gamma

Es el estudio cuantitativo del espectro energético de las fuentes de rayos gamma, en ramas tales como la industria nuclear, investigaciones geoquímicas y astrofísica. La mayoría de fuentes radiactivas producen rayos gamma, los cuales son de varias energías e intensidades. Cuando estas emisiones son detectadas y analizadas con sistema espectroscópico, espectros de rayos gamma pueden ser producidos. Un análisis detallado de estos espectros, es usado típicamente con el fin de identificar y cuantificar los emisores gamma presentes en una fuente gamma. Es una herramienta vital en ensayos radiométricos y un espectro es característico de los nucleidos emisores de rayos gamma contenidos en la fuente

En resumen, es una técnica nuclear para determinación y cuantificación de isótopos radiactivos en una muestra (Energía y Conteos) mediante un histograma de distribución de frecuencia de Conteos vs. Energía.

1.5.1. Distribución de Lorentz

Esta distribución es apropiada para describir información correspondiente a un comportamiento resonante, tal como la variación con la energía de la sección transversal de una reacción nuclear. La distribución normalizada de Lorentz está definida como

$$p_L(E; E_0, \Gamma) = \frac{A_p}{\pi} \frac{\Gamma/2}{(E - E_0)^2 + (\Gamma/2)^2}$$
(1.10)

donde A_p es amplitud de la distribución, es decir, el área bajo la curva y Γ es el ancho total a media altura (FWHM, por sus siglas en ingles: Full Width at Half Maximum). Esta definición asume que el fondo o el continuo en el que tal vez el pico esté sobrepuesto es despreciable o será removido de alguna manera. E_0 es el parámetro de corrimiento que especifica la ubicación del centro del pico de la distribución.

«La evaluación del número total de cuentas dentro del área del foto-pico, debido a una radiación dada, constituye un serio problema práctico en la medición de rayos gamma con una geometría de haz estrecho» (Fuente: [13, p. 110]).

Debido a que se utiliza la distribución normalizada de Lorentz, el valor obtenido luego de valuar la integral de la distribución de la ecuación (1.10) es A_p . Al momento de valuar una integral se asume que $\Delta E_H \approx 0$, pero en el caso de los detectores de centelleo, tales como el NaI(Tl), esto no es cierto. Entonces para obtener las cuentas totales en el foto-pico se tiene que el área del foto-pico se considera como se haría en un histograma. El área del histograma se define como el producto del número de eventos N_p en el pico, multiplicado por el ancho ΔE_h de la celda del histograma, dando como resultado

$$A_p = N_p \times \Delta E_H$$
$$N_p = \frac{A_p}{\Delta E_H} \tag{1.11}$$

donde N_p resulta ser igual a las cuentas en el foto-pico C(E), y ΔE_H es el valor, dado en unidades de energía, de la diferencia entre el canal Cn_i y Cn_{i+1} del tubo fotomultiplicador.

1.5.2. Resolución energética

El objetivo casi exclusivo de la espectroscopía gamma, es la medida del área del foto-pico para cada línea del espectro. La precisión con la que se puede lograr esto depende de la resolución energética R, la cual, de manera general está definida como

$$R = \frac{\text{FWHM}}{E_0} \tag{1.12}$$

Para el caso de los detectores de centelleo, tales como el NaI(Tl), la resolución aumenta principalmente debido a los efectos de la colección de la carga en el fotocátodo del tubo fotomutiplicador. La resolución está directamente ligada a la eficiencia cuántica del fotocátodo, i.e. la cantidad de fotones incidentes, con una energía E_0 , que se convierten en foto-electrones dentro del material. La cantidad de foto-electrones producidos son proporcionales a la amplitud de la señal producida por el tubo fotomultiplicador. Si se asume una estadística de Poisson se tiene que la desviación estándar es la raíz cuadrada de la cantidad de foto-electrones producidos. Pero la resolución energética está estrictamente definida en términos del FWHM. Si se asume que el foto-pico tendrá la forma de la distribución normal, se tiene que

$$FWHM = 2.35482 \cdot \sigma \tag{1.13}$$

$$FWHM = 2.35482 \cdot \sqrt{N_0}$$

donde N_0 es la cantidad de foto-electrones producidos. De las ecuaciones (1.13) y

(1.12) se puede deducir que existe una proporcionalidad entre la cantidad de fotoelectrones generados dentro del tubo fotomultiplicador y el cuadrado de la energía del fotón incidente.

$$N_0 \propto E_0^2 \tag{1.14}$$

De acuerdo con Knoll, Ref.[11, p. 345], el FWHM es proporcional a la raíz cuadrada de la energía del fotón incidente, por lo tanto

$$R = \frac{\text{FWHM}}{E_0} = K \frac{\sqrt{E_0}}{E_0} = \frac{K}{\sqrt{E_0}}$$
(1.15)

donde K es una constante de proporcionalidad.

Debido a que la resolución energética varia en términos de la energía, los valores de R usualmente están dados en términos de un valor de referencia de energía de rayos gamma. Resulta conveniente citar como estándar la resolución energética en términos de la energía del fotón característico del ¹³⁷Cs.

1.6. Efecto Compton

El efecto Compton consiste en el aumento de la longitud de onda de un fotón cuando choca con un electrón libre y pierde parte de su energía, como consecuencia del principio de conservación. La frecuencia o la longitud de onda de la radiación dispersada depende únicamente de la dirección de dispersión.

1.6.1. Cinemática del Efecto Compton

El efecto Compton, es un proceso de dispersión donde se asume la colisión de dos partículas, el fotón incidente y un electrón que inicialmente está en reposo. El fotón incidente da parte de su energía y momentum al electrón, el cual retrocede como resultado del impacto. El fotón resultante de la colisión puede salir en una variedad de ángulos θ respecto a la dirección de incidencia, pero con menor energía y momentum que el fotón incidente. La cinemática relaciona las energías y ángulos, cuando una interacción Compton se lleva acabo. Ver figura 1.4.

Conforme la frecuencia de la radiación aumenta, y se aleja de la región de la luz visible, el quanto tiene energías comparables, o mayores que la energía de enlace de los electrones en los átomos y, por lo tanto, el electrón atómico puede considerarse

Figura 1.4. Cinemática efecto Compton. Fuente: imagen tomada de Ref. [2, p. 126].

como libre y estacionario. La solución cinemática de la colisión está basada en la conservación de la energía y el momento. Luego de la colisión el fotón es dispersado un ángulo θ , con una nueva energía cuántica $h\nu'$ y momento $h\nu'/c$, y el electrón con un ángulo ϕ , energía cinética T y momento p.

De la conservación de la energía se tiene

$$\Delta E = 0$$

$$h\nu + mc^2 = h\nu' + \sqrt{(p^2c^2 + m^2c^4)}$$
 (1.16)

elevando ambas partes de la ecuación anterior al cuadrado y luego simplificando ese resultado, se obtiene

$$p^{2}c^{2} - h^{2}{\nu'}^{2} = h^{2}\nu^{2} - 2h^{2}\nu\nu' + 2mc^{2}h(\nu - \nu')$$
(1.17)

y de la conservación del momentum se tiene, para ambas coordenadas

$$\Delta P_x = 0 \ , \ \frac{h\nu}{c} = \frac{h\nu'}{c}\cos\theta + P\cos\phi \tag{1.18}$$

$$\Delta P_y = 0 , \quad 0 = \frac{h\nu'}{c}\sin\theta - P\sin\phi \qquad (1.19)$$

elevando ambas ecuaciones al cuadrado, y sumándolas se obtiene

$$c^{2}P^{2} = h^{2}\nu^{2} - 2h^{2}\nu\nu'\cos\theta + h^{2}{\nu'}^{2}$$
(1.20)

restando a la ecuación (1.17), la (1.20) y simplificando, da como resultado

$$h\nu'_{(\theta)} = \frac{h\nu_0}{\left[\left(\frac{h\nu_0}{m_0c^2}\right)\left(1 - \cos\theta\right) + 1\right]} \tag{1.21}$$

donde $m_0c^2 = 511 \ keV$ (la energía en reposo del electrón) y $h\nu$ también está expresado en keV. La energía de un fotón individual es igual a una constante h por la frecuencia ν del fotón, y de la relación de las ondas electromagnéticas en el vacío se tiene que $E = h\nu$, donde h es la constante de Planck. El keV es una unidad de energía que representa la variación de energía potencial que experimenta un electrón al moverse por un diferencial de potencial de un voltio.

De la ecuación (1.21) se obtiene el cambio en longitud de onda del fotón incidente debido a la colisión, recordando que $E = h\nu$ y sustituyendo esto en (1.21), da

$$E_{(\theta)} = \frac{E_0}{\left[\left(\frac{E_0}{m_0 c^2}\right) \left(1 - \cos\theta\right) + 1\right]}$$
(1.22)

donde E_0 representa la energía del fotón incidente. La ecuación (1.22) representa el cambio en la energía del fotón incidente debido a la colisión.

Una de las formas para obtener experimentalmente la masa del electrón, es reordenando términos en la ecuación (1.22) para obtener una ecuación de la forma mx + b = y. Por lo que la ecuación (1.22) queda como,

$$\frac{1}{E_{(\theta)}} = \frac{1}{E_0} + \frac{1}{m_0 c^2} (1 - \cos\theta) \tag{1.23}$$

donde la pendiente m está relacionada con la masa en reposo del electrón.

1.6.2. Sección eficaz para Efecto Compton

Es un área efectiva que cuantifica la probabilidad intrínseca de la ocurrencia de un evento de dispersión cuando un haz compuesto de partículas discretas, incide en un blanco. Esta predice la probabilidad de que una interacción Compton ocurra. La sección eficaz por fotón dispersado a un ángulo θ , por unidad de ángulo sólido por electrón, para la dispersión Compton fue una de las primeras calculadas usando la electrodinámica cuántica y se conoce como la formula de *Klein-Nishina*,(K-N):

$$\left(\frac{d_e\sigma}{d\Omega}\right)_{(\theta,E)} = \frac{r_e^2}{2} \frac{1}{\left[1 + \alpha(1 - \cos\theta)\right]^2} \left(1 + \cos^2\theta + \frac{\alpha^2(1 - \cos\theta)^2}{1 + \alpha(1 - \cos\theta)}\right) \left[\frac{cm^2}{\text{elec}}\right]$$
(1.24)

donde $r_e = 2.818 \times 10^{-13} cm$ es el radio clásico del electrón, y $\alpha = (E/m_0c^2)$, donde *E* es la energía del fotón disperso, dada en keV. «Físicamente, $d_e\sigma$ es el valor absoluto de la probabilidad de que un fotón con energía E_0 sufra una colisión, mientras atraviesa un material cuyo grosor sea tal que contenga un electrón por centímetro cuadrado, de la cual el fotón disperso surja con una energía E_{θ} , dentro de un ángulo sólido $d\Omega$, está polarizado de tal manera que su vector de campo eléctrico hace un ángulo θ con el vector de campo eléctrico del fotón incidente». Ref. [7, p. 678].

Sustituyendo la ecuación (1.22) en (1.24), se obtiene la sección transversal diferencial de (K-N) en términos solamente del ángulo de dispersión:

$$\left(\frac{d_e\sigma}{d\Omega}\right)_{\theta} = \frac{r_e^2}{2} \frac{E_0 + m_0 c^2 - E_0 \cos\theta}{(2E_0 + m_0 c^2 - 2E_0 \cos\theta)^3} \left(3E_0(E_0 + 3m_0 c^2) + (m_0 c^2)^2 - 3E_0(2E_0 + m_0 c^2)\cos\theta + (5E_0^2 + (m_0 c^2)^2 + 3E_0 m_0 c^2)\cos^2\theta - E_0(4E_0 + 3m_0 c^2)\cos^3\theta + 2E_0^2\cos^4\theta\right)$$
(1.25)

La sección eficaz (K-N) total por electrón ($_e\sigma$) se puede obtener integrando la ecuación (1.24), sobre todos los posibles ángulos θ de dispersión:

$${}_e\sigma = 2\pi r_e^2 \left(\frac{1+\alpha}{\alpha^2} \left(\frac{2(1+\alpha)}{1+2\alpha} - \frac{1}{\alpha} ln(1+2\alpha)\right) + \frac{1}{2\alpha} ln(1+2\alpha) - \frac{1+3\alpha}{(1+2\alpha)^2}\right) \begin{bmatrix} cm^2\\ elec \end{bmatrix}$$
(1.26)

La sección eficaz de dispersión (σ^s), se define como la fracción de la energía total, contenida en los fotones dispersos. Para calcular σ^s , se tiene:

$$\left(\frac{d\sigma^s}{d\Omega}\right)_{\theta} = \frac{1}{1 + \alpha(1 - \cos\theta)} \left(\frac{d_e\sigma}{d\Omega}\right)_{\theta}$$
(1.27)

que luego de integrar da

$$\sigma^{s} = \pi r_{e}^{2} \left(\frac{1}{\alpha^{3}} ln(1+2\alpha) + \frac{2(1+\alpha(2\alpha^{2}-2\alpha-1))}{\alpha^{2}(1+2\alpha)^{2}} + \frac{8\alpha^{2}}{3(1+2\alpha)^{3}} \right) \left[\frac{cm^{2}}{\text{elec}} \right] \quad (1.28)$$

El coeficiente de atenuación lineal total o disperso, en función de la energía del fotón incidente, se obtiene de

$$\mu_{(E)} = \sigma_{(E)} \frac{\rho N_A Z}{A} \tag{1.29}$$

donde N_A es el número de Avogadro, Z es el número atómico, A es el peso molecular y ρ la densidad del material en g/cm^3 .
2. Diseño Experimental

2.1. Equipos

Se presentan los equipos más importantes utilizados en el desarrollo del experimento, junto con una breve descripción de los mismos.

2.1.1. Colimadores

Se construyeron dos colimadores de plomo (Pb). Uno grande de diámetro $\emptyset(158.40 \pm 0.15)mm \times (65.45 \pm 0.05)mm$ de altura, y uno pequeño $\emptyset(72.50 \pm 0.15)mm \times (38.10 \pm 0.05)mm$, el cual encaja en el colimador grande. Los conductos, ubicados en el centro geométrico de cada colimador, por los cuales pasa la radiación son de $\emptyset(6.40 \pm 0.05)mm$ y $\emptyset(2.90 \pm 0.05)mm$ para el colimador grande y el pequeño, respectivamente.

Se justifica la utilización de los dos colimadores, debido a la facilidad que presenta el poder insertar/sacar la fuente radiactiva en el conducto del colimador grande y el estrechamiento del haz incidente de radiación en el dispersor por medio del colimador pequeño y de esta manera, lograr una geometría de haz estrecho. Ver figura 2.1.

(a) Colimador grande y pequeño.

(b) Dispositivo de colimación armado.

Figura 2.1. Colimador. Fuente: elaboración propia.

Se referirá como colimador al sistema compuesto por los dos colimadores, tal y como se ve en la figura 2.1b.

2.1.2. Dispersor

Se utilizó una varilla de aluminio de $\emptyset(12.70 \pm 0.05)mm \times (100 \pm 1)mm$.

2.1.3. Dispositivo de angulación

Con el fin de reducir el tiempo de preparación de la geometría del experimento (disposición de los componentes), aumentar la reproducibilidad del experimento y reducir la dosis efectiva en extremidades, se elaboró un dispositivo de angulación con un error en la medida de $(\pm 2.5^{\circ})$, el cual se coloca en el dispersor. Ver figura 2.2.

Figura 2.2. Dispositivo de angulación. Fuente: elaboración propia.

2.1.4. Equipo de detección

Se utilizó un identi FINDER Ultra. Este equipo es un espectrómetro gamma diseñado para operaciones in situ, que permite análisis cualitativos y cuantitativos de radiación gamma, usando un NaI(Tl) Ø35.56 mm×50.80 mm y el tubo Geiger-Müller interno. También posee un procesador digital de señal (DSP) con el software necesario y una base de datos interna, que permite la identificación de radioisótopos. El límite de detección de dosis del equipo utilizando el NaI(Tl), es desde 0.01 μ Sv/h hasta 499.9 μ Sv/h. Ver figura 2.5.

2.1.5. Equipos de radioprotección

Con el fin de ser capaz de poder manipular de manera segura la fuente de rayos gamma, fue necesario el uso de varios equipos. Ver figura 2.3.

Figura 2.3. Equipos varios para la radioprotección. De izquierda a derecha: Guantes plomados, detector de radiación, juego de pinzas especiales para manipular la fuente y mampara con vidrio plomado. Fuente: elaboración propia.

2.1.6. Filtros

Se utilizaron filtros de cobre (Cu) y de acrílico, para evitar los fotones de bajas energías en los espectros.

2.1.7. Fuente de rayos gamma

Fuente de braquiterapia de $^{137}\rm{Cs},$ marca Eckler & Ziegler, modelo CSM-3, y con actividad nominal de 2.10 GBq (8/10/2013). Ver figura 2.4.

Figura 2.4. Vista esquemática de la fuente de ¹³⁷Cs, modelo CSM-3. Todas las medidas en mm. Fuente: imagen tomada de Ref. [21].

Figura 2.5. Espectrómetro de mano, identiFINDER Ultra. Fuente: elaboración propia.

2.2. Diagramas y planos

Se presentan los diferentes diagramas para la construcción de los colimadores, el dispositivo de angulación y el plano con la disposición final de los elementos para la puesta en marcha del experimento. Ver figuras 2.6, 2.7, y 2.8.

(a) Diagrama colimador grande.

(b) Diagrama colimador pequeño.

Figura 2.6. Diagrama Colimadores. Todas las medidas de los diagramas en mm. Fuente: elaboración propia.

Figura 2.8. Plano de la disposición final de la geometría del experimento. Todas las medidas del diagrama en mm. Fuente: Elaboración propia.

2.3. Análisis espectral

Se presenta el método utilizado para la adquisición y procesamiento de los espectros obtenidos para las diferentes angulaciones.

2.3.1. Adquisición de datos

Se presenta el procedimiento para la adquisición de los datos crudos, i.e. los espectros sin procesar. Los ángulos θ que se trabajaron fueron: 30°, 55°, 65°, 75°, 90° y 120°. Debido a la naturaleza del experimento, los centros geométricos de todo los elementos del experimento deben de estar en el mismo plano geométrico. El procedimiento se describe a continuación:

- Preparar el espectrómetro. El identiFINDER Ultra tarda aproximadamente 5 minutos en auto-prepararse para la detección (inicialización del alto voltaje del tubo Geiger-Müller y el ajuste de la ganancia fina del tubo foto-multiplicador del NaI(Tl), por medio de una fuente de calibración de ⁴⁰K).
 - En las opciones avanzadas de configuración, modificar la duración del tiempo de identificación de los radioisótopos a 600 segundos, i.e. duración de la adquisición de datos.
- Alinear la salida del colimador con el centro del dispersor. Ver figura 2.8.
 - $\circ\,$ Colocar el dispersor a 0.30 m des de el centro geométrico del colimador grande. Ver figura 2.9.
 - Colocar los filtros enfrente de la salida del colimador, para que estos absorban los fotones de bajas energías. Ver figura 2.8.
- Colocar, medio centímetro por debajo del plano de trabajo, el dispositivo de angulación en el dispersor. Ver figura 2.2.
- Seleccionar el ángulo θ con el que se desea trabajar, utilizando la misma referencia que en la figura 1.4.
- Preparar el lugar donde se coloca el espectrómetro, tomando en cuenta que desde el centro del dispersor hasta el borde del espectrómetro debe haber 0.20 m. Ver figura 2.8.
 - Construir el castillo plomado para el espectrómetro. Ver figura 2.8.
 - Enfrente del *castillo*, colocar el blindaje para la colimación del haz disperso, mismo que incidirá en el detector. Ver figura 2.8.
- Colocar el espectrómetro en posición.
- Colocar la fuente en el colimador. Para más información sobre la manipulación segura de la fuente radiactiva, ver apéndice A.1.2.

- Utilizando los guantes plomados se sustrae de su confinamiento el tacho plomado que contiene la fuente.
- colocar el tacho en la mampara plomada.
- Utilizando el juego de pinzas especiales, se sustrae la fuente del tacho.
- Insertar la fuente en el conducto del colimador grande. Ver figura 2.9.
- Iniciar la adquisición de datos con el espectrómetro.
- Al terminar la adquisición, sin mover el espectrómetro de su lugar, se sustrae la fuente del colimador.
 - Desacoplar el colimador pequeño y con una varilla delgada empujar la fuente hasta el punto donde esta pueda tomarse con las pinzas.
 - Colocar la fuente en el tacho plomado.
 - Utilizando los guantes plomados se procede a guardar el tacho en su confinamiento.
- Iniciar la adquisición del espectro del fondo natural radiactivo.
 - $\circ\,$ La adquisición del espectro del fondo natural debe realizarse para cada uno de los ángulo $\theta.$
- Descargar del espectrómetro a la computadora, los espectros del fondo natural y del ángulo θ seleccionado.
- Restar ambos espectros, el del ángulo θ seleccionado menos el del fondo natural. Ver tabla A.9.

2.3.2. Procesamiento de datos

Se presenta el procedimiento para el análisis de los espectros obtenidos para todas las angulaciones. Se consideran como funciones independientes: la función de ruido de fondo F(E), la cual se trabajó para todos los espectros como un polinomio de grado p y la distribución descrita por la ecuación (1.10), de donde resulta de interés el área bajo la curva en el foto-pico. Por lo tanto, todos los espectro se consideran como la suma de ambas funciones

$$S(E) = F(E) + p_L(E)$$

$$S(E) = \sum_{i=0}^{p} a_i E^i + \frac{A_0}{\pi} \frac{\Gamma/2}{(E - E_0)^2 + (\Gamma/2)^2}$$
(2.1)

donde S(E) se considerará como la función analítica asociada al espectro, sin procesar, que se está analizando. Con el fin de poder trabajar la función S(E) como la suma de dos funciones, es necesario establecer en el espectro, los límites de ambas.

Figura 2.9. La X denota el centro geométrico del colimador grande y la ubicación de la fuente dentro del mismo. Todas las medidas en mm. Fuente: elaboración propia.

Para poder establecer, de una forma repetible el ancho de los foto-picos, se parte de la resolución R de un espectro de referencia, como lo es el del ¹³⁷Cs con un foto-pico característico de 662 keV y, tomando en cuenta que se utilizará la distribución de Lorentz, se consideraran 4 FWHM para el ancho del foto-pico, donde el FWHM, está definido según la ecuación (1.15). Ver sección A.5.2.

Definido el rango energético del foto-pico, sin realizar ningún tipo de operación aritmética, se procede a quitar del espectro las cuentas en este rango. Esto deja solamente las cuenta del espectro de ruido de fondo, a la cual se le debe ajustar la función F(E). Sin embargo, los datos del ruido de fondo no obedecen a una estadística definida, por lo tanto no se puede esperar que los datos en el espectro se ajusten de buena manera con la función F(E), i.e. obtener un buen χ^2 . Por lo tanto, el hecho de que matemáticamente el polinomio se ajuste de manera adecuada a los datos, no necesariamente indica que dicho polinomio sea el adecuado para los fines del experimento. Por lo que de todos los posibles polinomios, se seleccionaran de manera visual los que se consideren se adapten de mejor manera a los fines del experimento. Si estos polinomios fueran muy parecidos visualmente se aplicara el criterio de la información de Akaike para seleccionar el polinomio que mejor se ajuste a los datos. Ver sección A.5.1.

Una vez definida la función F(E), se realiza la resta del espectro total menos F(E), por lo tanto, a las cuentas del espectro que se encuentran dentro del rango energético definido para el foto-pico, con un valor mayor que cero, se les ajusta la distribución de la ecuación (1.10).

De manera ilustrativa se realizara el procedimiento para los conteos de la dis-

tribución a 30.8°. Asumiendo que el valor de E_0 corresponde a la energía con mas conteos de la distribución a 30.8°, entonces E_0 es igual a 552 keV, utilizando el Valor de K de la ecuación (A.10) y sustituyendo los valores ya mencionados en la ecuación (A.9), se tiene que el ancho del foto-pico, Δ_{fp} es 168.04 keV. El rango que se considerará para la regresión no lineal, utilizando la distribución del Lorentz, es de 468 a 636 keV. Los valores del CIA_p para los polinomios utilizados para todas las angulaciones, se presentan en la tabla 2.1, donde se puede observar que el polinomio con el valor de CIA_p mas pequeño para los conteos de la distribución a 30.8°, es el de grado 10, por lo tanto, relativo a los otros polinomios propuestos, este es el que mejor se ajusta a los datos. Los coeficientes del ajuste, obtenidos para la función S(E) del espectro para los conteos de la distribución a 30.8°, se presentan en la tabla 2.2.

Tabla 2.1. Valores de CIA_p utilizados para determiar el grado optimo del polinomio para el ajuste de F(E) para los espectros de todas las angulaciones. Fuente: Elaboración propia.

Grado	CIA_p					
p	30.8°	55.8°	65.8°	75.8°	90.8°	120.8°
12	-	_	744.88	_	_	374.20
11	—	—	742.57	—	—	372.38
10	1313.85	—	—	—	—	—
9	1313.99	979.46	—	—	—	—
8	1316.31	977.38	—	—	538.74	404.92
7	1339.54	979.22	—	—	537.48	405.78
6	_	978.16	_	559.55	_	434.03
5	—	—	—	558.44	—	—
4	_	_	_	556.47	_	_

Para el resto de los espectros en las diferentes angulaciones, se presentan las tablas de coeficientes y las gráficas en la sección A.6.1.

Experimentalmente lo que se obtiene, luego de procesar los datos, es el número total de cuentas en el foto-pico C(E) de los fotones dispersor que fueron detectados para cada ángulo θ .

Utilizando los valores A_0 , de las tablas A.8, 2.2, A.10, A.11, A.12, A.13 y A.14, tomando $\Delta H_E = 3$ keV, y sustituyendo estos valores en la ecuación (1.11), se tiene que la cantidad de cuentas en los foto-picos son, ver tabla 2.3.

Coeficientes	
a_0	$-2.98176022490656\mathrm{E}{+02}$
a_1	$3.32976197280856\mathrm{E}{+}01$
a_2	-5.62347382318049E-01
a_3	5.45639753257439E-03
a_4	-3.40628930725119E-05
a_5	1.44559083964570E-07
a_6	-4.24009484442012E-10
a_7	8.38731565822522E-13
a_8	-1.05304228086491E-15
a_9	7.48879493062798E-19
a_{10}	-2.27970130921733E-22
A_0	57267
E_0	$548.39 \ keV$
$\Gamma_{(\rm FWHM)}$	$52.46 \ keV$

Tabla 2.2. Coeficientes obtenidos para la función S(E) del espectro a 30.8° de angulación. Fuente: elaboración propia.

Angulación	Energía [keV]	Δ	Cuentas
$(\theta \pm 2.5^{\rm o})$	$(E_0^{exp} \pm \frac{\Gamma}{2})$	A_p	C(E)
0.8	657 ± 23	6,518,381	$2,\!172,\!794$
30.8	548 ± 21	$57,\!267$	19,089
55.8	427 ± 24	$35,\!249$	11,750
65.8	369 ± 26	$34,\!543$	$11,\!514$
75.8	315 ± 22	$36,\!251$	12,084
90.8	274 ± 19	42,885	$14,\!295$
120.8	215 ± 15	31,776	$10,\!592$

Tabla 2.3. Cuentas C(E) en el foto-pico. Fuente: elaboración propia.

3. Dispersión de Fotones de Bajas Energías en Elementos Ligeros

3.1. Modelo para la dispersión de los fotones

Con el fin de obtener un estimado del número de fotones N, dispersos en un ángulo θ , a través de una ángulo sólido Ω_2 , en un tiempo t, se propone el siguiente modelo

$$N_{(\theta)} = n_e \cdot g \cdot t \cdot \Omega_2 \left(\frac{d_e \sigma}{d\Omega}\right)_{\theta}$$
(3.1)

donde n_e es el número de electrones iluminados por lo rayos gamma incidentes en la porción del dispersor iluminado, g es el número de fotones incidentes en el dispersor por unidad de área por segundo, Ω_2 es el ángulo sólido subtendido sobre el detector debido al dispersor y $[d_e\sigma/d\Omega]$ es la fórmula de (K-N), ecuación (1.25). n_e se calcula de la siguiente forma:

$$n_e = \rho V \frac{N_A Z}{A} \tag{3.2}$$

donde V, dado en cm^3 , es el volumen del dispersor iluminado por los fotones incidentes. Debido a lo delgado del dispersor en relación a la distancia que existe desde el centro geométrico del colimador hasta el centro del detector, se asume el haz colimado de radiación como un cilindro. El volumen de la intersección de 2 cilindros, como se ve en la figura 3.1, es

$$V = 8 \int_0^{R_d} \sqrt{(R_c^2 - x^2) \cdot (R_d^2 - x^2)} dx$$
(3.3)

donde R_d es el radio del dispersor, ver sección 2.1.2, y R_c es el radio del tamaño del campo, ver tabla A.7. Resolviendo, queda que el volumen del dispersor iluminado por los fotones incidentes es

$$V = (272 \pm 3) \times 10^{-3} [cm^3] \tag{3.4}$$

Con los datos de Ref.[2, apéndice B.1] para el aluminio, se tiene que el número de electrones iluminados por lo rayos gamma incidentes en la porción del dispersor iluminado es

$$n_e = (2.12 \pm 0.02) \times 10^{23} [e^-] \tag{3.5}$$

Figura 3.1. Volumen iluminado del dispersor, debido al haz colimado de radiación. Escalas en *mm*. Fuente: Elaboración propia.

g se calcula de la siguiente forma:

$$g = \frac{A_0 f}{\Omega_1 z_0^2} \tag{3.6}$$

donde A_0 es la actividad de la fuente dada en Bq, f es la probabilidad de emisión de los fotones incidentes en el dispersor, Ω_1 es el ángulo sólido subtendido sobre el dispersor debido a la fuente cilíndrica, y Z_0 es la distancia desde el borde de la fuente hasta el dispersor.

3.1.1. Ángulo sólido subtendido por una fuente cilíndrica, coaxial y paralela sobre un disco

«El conocimiento de la eficiencia geométrica es esencial en todas las medidas absolutas de intensidad de los materiales radiactivos». (Fuente: [28], p.1).

Primero considérese una fuente uniforme con forma de disco, asúmase que la fuente emite isotrópicamente en un ángulo sólido de (4π) , con un área $S_1 = \pi R_s^2$, la cual está separada por una distancia z_0 del disco, el cual es coaxial y paralelo a la fuente, y posee un área $S_2 = \pi R_c^2$, donde R es la distancia en línea recta desde un elemento de área arbitrario de la superficie dS_2 y sea \hat{n}_2 el vector normal del elemento dS_2 dirigido hacia S_1 . La intensidad por unidad de área de S_1 es S_0 , partículas por

unidad de área por unidad de tiempo. La razón a la cual el número de partículas emitido desde dS_1 logran impactar en un área dS_2 es

$$dM = \frac{S_0}{4\pi R^2} \left(\frac{\hat{n}_2 \cdot \vec{R}}{R}\right) dS_1 dS_2 \tag{3.7}$$

donde $(\hat{n}_2 \cdot \vec{R})/R$ es la proyección de dS_2 en la dirección de R. Utilizando la ley

Figura 3.2. Geometría para un sistema conformado por una fuente de disco paralela y coaxial, a un disco detector. Fuente: imagen tomada de Ref. [25].

de cos
enos y la definición del producto punto, la ecuación (3.7)se puede re
escribir como

$$dM = \frac{S_0}{4\pi} dS_1 dS_2 \frac{z_0}{[z_0^2 + \rho_1^2 + \rho_2^2 - 2 + \rho_1 \rho_2 \cos(\phi_1 - \phi_2)]^{3/2}}$$
$$dM = \frac{S_0}{4\pi} dS_1 dS_2 \frac{z_0}{R_{(z)}^3}$$
$$\int dM = \int \frac{S_0}{4\pi} dS_1 dS_2 \frac{\partial}{\partial z} \left[\frac{-1}{R_{(z)}}\right]$$
(3.8)

debido a que la emisión total desde S_1 es $(S_0 \pi R_s^2)$, la eficiencia geométrica del detector, es decir, la razón del número de partículas emitidas desde S_1 que impactan en S_2 es

$$I = \frac{M}{S_0 \pi R_s^2}$$
$$I = \frac{1}{4\pi^2 R_s^2} \int dS_2 \int dS_1 \frac{\partial}{\partial z} \left[\frac{-1}{R_{(z)}} \right]$$
(3.9)

estableciendo $z_0 = |z_1 - z_2|$ y $R = |r_1 - r_2|$, y utilizando la solución de la función de Green para el Laplaciano en tres dimensiones

$$\nabla^2 G(r_1, r_2) = -\delta(r_1 - r_2) \tag{3.10}$$

$$\nabla^2 \left(\frac{-1}{4\pi |r_1 - r_2|} \right) = \delta(r_1 - r_2) \tag{3.11}$$

y reescribiendo la función delta de Dirac en coordenadas cilíndricas

$$\delta(r_1 - r_2) = \delta(\phi_1 - \phi_2)\delta(z_1 - z_2)\frac{\delta(\rho_1 - \rho_2)}{\rho_1}$$
(3.12)

Expandiendo en una serie de Fourier la función delta de Dirac azimutal con un periodo de 2π , da como resultado

$$\delta(\phi_1 - \phi_2) = \sum_{m=-\infty}^{+\infty} a_m e^{+im(\phi_1 - \phi_2)}$$

$$a_m = \frac{1}{2\pi} \int_0^{2\pi} \delta(x) e^{+im(x)} dx \quad \therefore \quad x = \phi_1 - \phi_2$$

$$a_m = \frac{1}{2\pi} (e^{+im0}) = \frac{1}{2\pi}$$

$$\delta(\phi_1 - \phi_2) = \sum_{m=-\infty}^{+\infty} \frac{1}{2\pi} e^{+im(\phi_1 - \phi_2)}$$
(3.13)

La transformada de Hankel es una transformación integral equivalente a una transformación bidimensional con un núcleo integral simétrico radial, también llamada la transformada de Fourier-Bessel. Haciendo uso de la transformada de Hankel (de orden cero) para la función delta de Dirac radial, da como resultado

$$g(k) = \int_0^\infty f(t) J_m(kt) t dt \quad \therefore \quad f(\rho_2) = \delta(\rho_1 - \rho_2)$$
$$g(k) = \int_0^\infty \delta(\rho_1 - \rho_2) J_m(k\rho_2) \rho_2 \ d\rho_2 = J_m(k\rho_1) \rho_1$$

$$\delta(\rho_1 - \rho_2) = \int_0^\infty g(k) J_m(k\rho_2) k \, dk$$

$$\delta(\rho_1 - \rho_2) = \int_0^\infty J_m(k\rho_1) J_m(k\rho_2) \rho_1 k \, dk$$
(3.14)

por lo tanto la expansión completa de $\delta(r_1 - r_2)$, hasta el momento, es

$$\delta(r_1 - r_2) = \left[\frac{1}{2\pi}\right] \sum_{m = -\infty}^{+\infty} e^{+im(\phi_1 - \phi_2)} \\ \times \int_0^\infty J_m(k\rho_1) J_m(k\rho_2) k \ dk \times \delta(z_1 - z_2)$$
(3.15)

se asume una expansión similar para $G(r_1, r_2)$, con lo cual se obtiene

$$G(r_1, r_2) = \frac{1}{2\pi} \sum_{m=-\infty}^{+\infty} e^{+im(\phi_1 - \phi_2)} \\ \times \int_0^\infty J_m(k\rho_1) J_m(k\rho_2) k \ dk \times g(z_1, z_2)$$
(3.16)

aplicando el Laplaciano en coordenadas cilíndricas a $G(r_1, r_2)$, da como resultado

$$\nabla^{2}G(r_{1},r_{2}) = \frac{1}{\rho_{1}}\frac{\partial}{\partial\rho_{1}}\left[\rho_{1}\frac{\partial G}{\partial\rho_{1}}\right] + \frac{1}{\rho_{1}^{2}}\frac{\partial^{2}G}{\partial\phi_{1}^{2}} + \frac{\partial^{2}G}{\partial z_{1}^{2}}$$

$$\nabla^{2}G(r_{1},r_{2}) = \frac{1}{2\pi}\sum_{m=-\infty}^{+\infty} e^{+im(\phi_{1}-\phi_{2})}\int_{0}^{\infty}J_{m}(k\rho_{1})J_{m}(k\rho_{2})kdk$$

$$\times \left\{\frac{1}{\rho_{1}J_{m}(k\rho_{1})}\frac{\partial}{\partial\rho_{1}}\left[\rho_{1}\frac{\partial}{\partial\rho_{1}}\left[J_{m}(k\rho_{1})\right]\right] - \frac{m^{2}}{\rho_{1}^{2}} + \frac{\partial^{2}}{\partial z_{1}^{2}}\left[g(z_{1},z_{2})\right]\right\}$$

$$(3.17)$$

sustituyendo las expresiones (3.15) y (3.17) en (3.10), da como resultado

$$\left\{\frac{1}{\rho_1 J_m(k\rho_1)}\frac{\partial}{\partial\phi_1}\left[\rho_1\frac{\partial}{\partial\phi_1}\left[J_m(k\rho_1)\right]\right] - \frac{m^2}{\rho_1^2}\right\} + \frac{\partial^2}{\partial z_1^2}[g(z_1, z_2)] = -\delta(z_1 - z_2) \quad (3.18)$$

re-ordenando y, agregando y sustrayendo el valor constante k^2 , da como resultado que la parte entre corchetes de la expresión anterior satisfaga la ecuación diferencial de Bessel, con lo cual se obtiene

$$\frac{\partial^2}{\partial z_1^2} [g(z_1, z_2)] + \delta(z_1 - z_2) - k^2 = 0$$
(3.19)

aplicando la transformada de Fourier a cada termino en la ecuación (3.19)

$$F(\omega) = \frac{e^{i\omega z_2}}{\sqrt{2\pi}(\omega^2 + k^2)}$$
(3.20)

invirtiendo el resultado de la transformada, da como resultado

$$g(z_1, z_2) = \frac{e^{-k|z_1 - z_2|}}{2k} = \frac{e^{-kz_0}}{2k}$$
(3.21)

Sustituyendo (3.21) en la ecuación (3.16) se obtiene el resultado de la ecuación (3.10), el cual queda de la siguiente manera

$$\frac{1}{R} = \sum_{m=-\infty}^{+\infty} e^{im(\phi_1 - \phi_2)} \int_0^\infty J_m(k\rho_1) J_m(k\rho_2) e^{-kz_0} dk$$
(3.22)

Sustituyendo lo obtenido en la ecuación anterior en (3.9), da como resultado

$$I = \frac{1}{4\pi^2 R_s^2} \int_{S_2} \int_{S_1} \left[\sum_{m=-\infty}^{+\infty} e^{im(\phi_1 - \phi_2)} \int_0^\infty J_m(k\rho_1) J_m(k\rho_2) e^{-kz_0} k \, dk \right] dS_1 \, dS_2$$
(3.23)

Tomando z_0 constante, el diferencial de superficie en coordenadas polares queda como $dS = \rho d\rho d\phi$, e integrando la parte azimutal de ϕ_1 y ϕ_2 de la ecuación (3.23) se obtiene

$$\sum_{m=-\infty}^{+\infty} \int_0^{2\pi} \int_0^{2\pi} e^{im(\phi_1 - \phi_2)} d\phi_1 d\phi_2 = \sum_{m=-\infty}^{+\infty} \left[\frac{-(e^{i2\pi m} - 1)^2}{m^2} \right]$$

El resultado anterior da cero cuando $m \neq 0$, y en m = 0 genera una forma indeterminada. Por lo tanto, con el fin e obtener el valor de la función conforme el limite de la misma tiende a cero, se utiliza el método de L'Hospital para formas indeterminadas.

$$\lim_{m \to 0} \frac{-(e^{i2\pi m} - 1)^2}{m^2} \stackrel{\text{L'H}}{=} \frac{2\pi i e^{i2\pi m} (1 - e^{i2\pi m})}{m}$$

$$\lim_{m \to 0} \frac{2\pi i e^{i2\pi m} (1 - e^{i2\pi m})}{m} \stackrel{\text{L'H}}{=} \frac{(2\pi)^2 e^{i2\pi m} (2e^{i2\pi m} - 1)}{1} = (2\pi)^2$$

$$\lim_{m \to 0} \frac{-(e^{i2\pi m} - 1)^2}{m^2} = (2\pi)^2$$

$$\int_0^{2\pi} \int_0^{2\pi} e^{im(\phi_1 - \phi_2)} d\phi_1 d\phi_2 = (2\pi)^2 (\delta_{m,0})$$
(3.24)

donde $\delta_{m,0}$ tiene valor unitario si m = 0, y valor de cero para $m \neq 0$. Por lo tanto el sub-índice m pasa a tener un valor de cero, y la ecuación (3.23) se vuelve

$$I = \frac{1}{R_s^2} \int_0^{R_s} \int_0^{R_c} \left[\int_0^\infty J_0(k\rho_1) J_0(k\rho_2) e^{-kz_0} k \ dk \right] \rho_1 \rho_2 \ d\rho_1 d\rho_2 \tag{3.25}$$

De las propiedades de las funciones de Bessel se tiene que

$$\frac{d}{dx}[x^n J_n(x)] = x^n J_{n-1}(x)$$

$$x^n J_n(x)\Big|_0^R = \int_0^R x^n J_{n-1}(x) dx$$
si $x = k\rho$ y $n = 1$

$$\frac{R}{k} J_1(kR) = \int_0^R \rho J_0(k\rho) d\rho$$
(3.26)

Utilizando la propiedad descrita en la ecuación (3.26) en (3.25) se obtiene

$$I = \frac{1}{R_s} \int_0^\infty \left[\int_0^{R_s} \rho_1 J_0(k\rho_1) d\rho_1 \right] \left[\int_0^{R_c} \rho_2 J_0(k\rho_2) d\rho_2 \right] e^{-kz_0} dk$$
$$I_{\text{disco}} = \frac{R_c}{R_s} \int_0^\infty J_1(kR_s) J_1(kR_c) \frac{e^{-kz_0}}{k} dk = \frac{\Omega_{\text{disco}}}{4\pi}$$
(3.27)

donde I_{disco} es la eficiencia geométrica, para una fuente y un detector circulares, y Ω_{disco} es el ángulo sólido subtendido por la fuente sobre el disco. Si una fuente cilíndrica tiene un radio R_s y una altura h_0 la eficiencia geométrica está dada por

$$I_{\rm cil} = \frac{1}{h_0} \int_{z_0}^{z_0+h_0} I_{\rm disco} dh$$

$$I_{\rm cil} = \frac{R_c}{R_s h_0} \int_0^\infty \frac{J_1(kR_s) J_1(kR_c)}{k} \left[\int_{z_0}^{z_0+h_0} e^{-kh} dh \right] dk$$

$$I_{\rm cil} = \frac{R_c}{R_s h_0} \int_0^\infty \frac{J_1(kR_s) J_1(kR_c)}{k^2} e^{-kz_0} \left(1 - e^{-kh_0}\right) dk = \frac{\Omega_1}{4\pi}$$
(3.28)

donde $I_{\rm cil}$ es la eficiencia geométrica para una fuente cilíndrica y un disco, y Ω_1 es el ángulo sólido subtendido por la fuente cilíndrica sobre el dispersor. Sustituyendo los datos de la fuente, los cuales serian R_s y h_0 , de la sección 2.1.7, la distancia desde el borde de la fuente hasta el dispersor es $z_0 = (29.1 \pm 0.1)cm$, ver figuras 2.8 y 2.9, y R_c , ver tabla A.7. Se tiene que el ángulo sólido subtendido por una fuente cilíndrica coaxial y paralela a un disco es

$$\Omega_1 = (29.2 \pm 0.4) \times 10^{-4} [Sr] \tag{3.29}$$

sustituyendo en la ecuación (3.6), la actividad A_0 de la fuente, ver sección 2.1.7, la probabilidad f de emisión del fotón de 662 keV del ${}^{137}Cs$, que es del 85%, y el valor obtenido de Ω_1 , se tiene que g es

$$g = (7.22 \pm 0.11) \times 10^7 \left[\frac{\gamma}{cm^2 - s}\right]$$
(3.30)

3.1.2. Ángulo sólido subtendido por dos cilindros cuyos ejes axiales son perpendiculares

Considérese ahora el ángulo sólido subtendido por una fuente cilíndrica cuyo eje axial es perpendicular al eje axial de un cilindro detector, esta es la geometría resultante luego de la dispersión de los fotones. Se hace la consideración del dispersor como una fuente, debido a que al momento de irradiar, este se comporta como una fuente multienergética.

Acorde a la Ref.[23], el ángulo sólido de un cilindro subtendido sobre un punto cualquiera paralelo al eje coaxial del cilindro, es la suma del ángulo sólido debido a la tapadera circular del cilindro mas cercana al punto en cuestión, más el ángulo sólido debido al rectángulo circunscrito dentro del cilindro. Los fotones dispersos son colimados antes de llegar al detector, por lo tanto, el cilindro detector se convierte en un prisma rectangular.

Debido a la simetría del problema y la distancia que separa a los cilindros, grande en comparación a las medidas de los mismos, el problema del ángulo sólido de los cilindros sin simetría axial, se convierte en el del ángulo sólido subtendido por dos placas paralelas. Ver figura 3.3.

Figura 3.3. Geometría simplificada para el problema de los cilindros en posición asimétrica. Geometría para el ángulo sólido subtendido por dos placas paralelas. Fuente: Elaboración propia.

Considérese prisma rectangular con base $R_d \times R_c$ y altura z_1 , como se muestra en la figura 3.4. El ángulo sólido subtendido por el rectángulo sombreado sobre el punto P es

$$\Omega_p = z_1 \int_0^{R_d} \int_0^{R_c} \frac{dxdy}{(x^2 + y^2 + z_1^2)^{\frac{3}{2}}}$$
(3.31)

esta integral doble da como resultado

$$\Omega_p = \arctan\left(\frac{R_d R_c}{z_1 \sqrt{R_d^2 + R_c^2 + z_1^2}}\right) \tag{3.32}$$

de la figura 2.8 se tiene $z_1 = (200 \pm 1)cm$, que en relación a R_d y R_c , resulta ser mucho mas grande. Por lo que en la ecuación (3.32) se puede emplear la aproximación $\tan(\Omega) \approx \Omega$. De donde resulta que el ángulo sólido de un rectángulo subtendido sobre el punto P(0,0, z_1) es

$$\Omega_p = \frac{R_d R_c}{z_1 \sqrt{R_d^2 + R_c^2 + z_1^2}}$$
(3.33)

La simetría impuesta en el problema exige que los centros de ambos rectángulos coincidan en un eje, independientemente de sus dimensiones, entonces se tiene que

Figura 3.4. Geometría para el cálculo del ángulo sólido subtendido por un rectángulo en un punto, donde $a=R_d$, $b=R_c$ y $Z=z_1$. Fuente: imagen tomada de Ref. [9].

para un punto cualquiera $P(x,y,z_1)$, ver figura 3.5, el ángulo sólido es

$$\Omega_{p} = \frac{(R_{d} + x)(R_{c} + y)}{z_{1}\sqrt{(R_{d} + x)^{2} + (R_{c} + y)^{2} + z_{1}^{2}}} + \frac{(R_{d} + x)(R_{c} - y)}{z_{1}\sqrt{(R_{d} + x)^{2} + (R_{c} - y)^{2} + z_{1}^{2}}} + \frac{(R_{d} - x)(R_{c} - y)}{z_{1}\sqrt{(R_{d} - x)^{2} + (R_{c} + y)^{2} + z_{1}^{2}}} + \frac{(R_{d} - x)(R_{c} - y)}{z_{1}\sqrt{(R_{d} - x)^{2} + (R_{c} - y)^{2} + z_{1}^{2}}} + \frac{(R_{d} - x)(R_{c} - y)}{z_{1}\sqrt{(R_{d} - x)^{2} + (R_{c} - y)^{2} + z_{1}^{2}}} \tag{3.34}$$

El ángulo sólido subtendido por la placa con dimensiones $(2R_d \times 2R_c)$, sobre la placa con dimensiones $(2R_{\text{NaI}} \times L)$, separadas una distancia z_1 es

$$\Omega_{plc} = \Omega_2 = \frac{1}{\left(\frac{L}{2}\right) R_{\text{NaI}}} \int_0^{\left(\frac{L}{2}\right)} \int_0^{R_{\text{NaI}}} \left[\frac{(R_d + x)(R_c + y)}{z_1 \sqrt{(R_d + x)^2 + (R_c + y)^2 + z_1^2}} + \frac{(R_d + x)(R_c - y)}{z_1 \sqrt{(R_d + x)^2 + (R_c - y)^2 + z_1^2}} + \frac{(R_d - x)(R_c + y)}{z_1 \sqrt{(R_d - x)^2 + (R_c - y)^2 + z_1^2}} + \frac{(R_d - x)(R_c - y)}{z_1 \sqrt{(R_d - x)^2 + (R_c - y)^2 + z_1^2}} \right] dxdy$$
(3.35)

donde $2R_{\text{NaI}}$ es el radio del detector de NaI(Tl) descrito en la sección 2.1.4, y L es la longitud de la abertura de colmación del detector, ver figuras 3.3 y 2.8. Resolviendo la integral, da como resultado que el ángulo sólido debido a dos placas rectangulares es

$$\Omega_2 = (58.0 \pm 0.8) \times 10^{-4} [Sr] \tag{3.36}$$

Figura 3.5. Geometría para el cálculo del ángulo sólido subtendido por un rectángulo en un punto arbitrario, donde $a=R_d$, $b=R_c$ y Z= z_1 . Fuente: imagen tomada de Ref. [6].

3.2. Modelo para la interacción de los fotones dispersos con el material detector

Como se mencionó en la sección anterior, desde el punto de vista del detector, el material dispersor se convierte en una fuente multienergética, la cual abarca un rango energético desde 662 hasta 184 keV, esto debido a la fuente de ¹³⁷Cs que se utilizó, y el rango de la variación angular del experimento.

Las cuentas en el foto-pico C(E) se pueden relacionar con $N_{(\theta)}$, de la ecuación (3.1), realizando las siguientes correcciones:

- Atenuación de los rayos gamma en el dispersor: La probabilidad de transmisión del fotón disperso a través del dispersor, $\eta(E)$.
- Eficiencia del detector de NaI(Tl): Las cuentas observadas deben ser corregidas con la probabilidad de interacción, dependiente de la energía, para la interacción con el cristal de NaI(Tl), $\epsilon(E)$.
- Peak-to-total ratio [razón pico-total]: Razón de fotones contabilizados en el foto-pico contra los fotones totales en el espectro gamma, P(E).

por lo que resulta que las cuentas en el foto-pico se relacionan con la cantidad de

fotones dispersos por medio de

$$N(E) \propto \frac{C(E)}{\eta(E) \cdot \epsilon(E) \cdot P(E)}$$
$$N(E) = \frac{1}{k} \cdot \frac{C(E)}{\eta(E) \cdot \epsilon(E) \cdot P(E)}$$
(3.37)

donde k es un factor de proporcionalidad. Esto nos permite relacionar directamente las cuentas en el foto-pico C(E) con la sección eficaz diferencial de Klein-Nishina. Haciendo uso de la ecuación (3.1), se obtiene

$$\frac{C(E)}{\eta(E) \cdot \epsilon(E) \cdot P(E)} \propto n_e \cdot g \cdot t \cdot \Omega_2 \left(\frac{d_e \sigma}{d\Omega}\right)_{\theta}$$
$$\frac{1}{n_e \cdot g \cdot t \cdot \Omega_2} \cdot \frac{C(E)}{\eta(E) \cdot \epsilon(E) \cdot P(E)} \propto \left(\frac{d_e \sigma}{d\Omega}\right)_{\theta}$$
(3.38)

$$\frac{1}{n_e \cdot g \cdot t \cdot \Omega_2} \cdot \frac{C(E)}{\eta(E) \cdot \epsilon(E) \cdot P(E)} = k \left(\frac{d_e \sigma}{d\Omega}\right)_{\theta}$$
(3.39)

3.2.1. Atenuación de los rayos gamma en el dispersor, $\eta(E)$

Se consideraran solamente los eventos individuales de dispersión. Se asume que la fuente radiactiva esta tan lejos del dispersor que el haz de fotones incidentes puede considerarse monoenergético, uniforme y paralelo (i.e. un haz colimado); y que la distancia que separa al dispersor del detector es tan grande que los fotones dispersos que son detectados pueden considerarse un haz de fotones paralelo pero no uniforme.

Utilizando la figura 3.6 se observa que para un solo fotón, desde su entrada al dispersor, este recorre una distancia X antes de colisionar, y luego de ser disperso un ángulo θ , recorrer una distancia Y para salir del dispersor sin colisionar. De la figura 3.6 se tiene que $r \sin \phi = R_d \sin \gamma$, por lo tanto las componentes en y de los vectores r y R_d son iguales, $r_y = R_y$.

$$R_x^2 = R_d^2 - R_y^2$$
$$R_x^2 = R_d^2 - (R_d \sin \gamma)^2$$
$$R_x = \sqrt{R_d^2 - (r \sin \phi)^2}$$

Debido a que en el área iluminada los fotones siempre inciden en la misma dirección, se tiene que

$$X = R_x - r\cos\phi$$

Figura 3.6. Diagrama de la geometría de la dispersión Compton. Fuente: imagen tomada de Ref. [16, p. 9].

por lo que la distancia X recorrida por el fotón desde su entrada al dispersor, hasta que sufre una interacción esta dada por

$$X = \sqrt{R_d^2 - (r\sin\phi)^2} - r\cos\phi$$
 (3.40)

y, de manera análoga, se tiene que la distancia Y recorrida por el fotón, luego de ser dispersado un ángulo θ , hasta llegar al punto de salida del dispersor es,

$$Y = \sqrt{R_d^2 - (r\sin\psi)^2} - r\cos\psi$$

$$Y = \sqrt{R_d^2 - (r\sin(\pi - \theta + \phi))^2} - r\cos(\pi - \theta + \phi)$$
(3.41)

Ahora considérese un elemento de área $rdrd\phi$ en el dispersor, con coordenadas (r,ϕ) . La probabilidad de transmisión se puede definir en términos de la eficiencia absoluta de detección, que está definida según la ecuación (1.6). Asumiendo que el "número de pulsos registrados" son los fotones que logran escapar del dispersor recorriendo una distancia Y luego de ser dispersos un ángulo θ , sí el "número de quantos de radiación emitidos por la fuente" son los fotones que luego de incidir en el dispersor recorren una distancia X y logran interaccionar en éste, se tiene entonces que la atenuación normalizada de los rayos gamma en el dispersor, esta dada por

$$\eta(E,\theta) = \frac{\int \int \left[e^{-\alpha \cdot X} e^{-\beta(E) \cdot Y}\right] r dr d\phi}{\int \int \left[e^{-\alpha X}\right] r dr d\phi}$$
(3.42)

donde α es el coeficiente de atenuación lineal total del material dispersor correspondiente a la energía del fotón incidente, y $\beta(E)$ el coeficiente de atenuación lineal del material dispersor correspondiente a la energía del fotón disperso. Asumiendo el volumen iluminado como un cilindro y sustituyendo: $\beta(E)$ por la ecuación (A.3), el valor de R_d , el valor de α por $\beta(662)$ y por ultimo, integrando la ecuación (3.42) de 0 a 2π en ϕ , y de 0 a R_d en r, para cada uno de los valores de angulación-energía de la tabla 2.3, se obtienen los valores de atenuación de los rayos gamma en el dispersor para las energías ya mencionadas. Ver tabla 3.2.

3.2.2. Eficiencia del detector de NaI(Tl), $\epsilon(E)$

La cuentas en el foto-pico también deben corregirse con la probabilidad de interacción en el detector, la cual debe estar en términos de la energía del fotón incidente. Para los fotones que interactúan en el cristal de NaI(Tl) la probabilidad de interacción esta dada según la ecuación

$$\epsilon(E) = 1 - e^{-\omega(E) \cdot H_{NaI}} \tag{3.43}$$

donde, $\omega(E)$ es el coeficiente de atenuación lineal del material detector correspondiente a la energía del fotón disperso y H_{NaI} la altura del detector. Sustituyendo $\omega(E)$ por la ecuación (A.4) y H_{NaI} por el valor dado en la sección 2.1.4 y por ultimo, valuando para cada uno de los valores de energía de la tabla 2.3, se obtiene la eficiencia del detector de NaI(Tl) para las energías mencionadas. Ver tabla 3.2.

3.2.3. Razón pico-total, P(E)

Los valores de P(E) dependen de la energía del fotón, las dimensiones del detector y el material del cual esta hecho el volumen activo de detección, pero no dependen, en un factor apreciable, de la distancia de la fuente al detector o de la forma de la fuente, por lo tanto, para cada valor de energía los valores de P(E) son característicos de cada detector.

Utilizando un modelo semi-empírico propuesto por Cesana & Terrani, Ref.[5], permite derivar una expresión para P(E) con parámetros característicos del material detector, tales como sus dimensiones y los coeficientes de atenuación para energías abajo del umbral de la generación de pares. Esta parametrización se realiza en términos de la longitud media del volumen activo del detector, la sección eficaz total por electrón, de la ecuación (1.26) y la sección eficaz de dispersión de la ecuación (1.28), de las cuales las ultimas dos dependen de la energía del fotón incidente. Como primera aproximación, se asume que el punto de interacción puede estar en cualquier punto del volumen activo del detector, y la dirección de la dispersión es más o menos isotrópica.

$$P(E) = 1 - \left(\frac{\sigma^s}{e\sigma}\right) e^{-L \cdot f(E)}$$
(3.44)

donde $L = 4 \cdot (\text{Vol}/A_s)$ es la longitud media del volumen activo, Vol es el volumen activo y A_s es el área superficial del volumen activo. Considerando las dos caras

circulares del detector cilíndrico de NaI(Tl), se tiene

$$L = 4 \left(\frac{\pi R_{NaI}^2 H_{NaI}}{2\pi R_{NaI} H_{NaI} + 2\pi R_{NaI}^2} \right)$$
$$L = 2 \left(\frac{R_{NaI} H_{NaI}}{H_{NaI} + R_{NaI}} \right)$$
$$L = 2.634 [\text{cm}]$$
(3.45)

L se considera el factor de peso para la función f(E) que depende de la energía de incidencia, que se puede interpretar, a bajas energías, como un coeficiente de transporte lineal de energía efectivo para los electrones generados debido al efecto de dispersión de Compton en el volumen activo. Debido a que f(E) depende exclusivamente de la energía, está se puede obtener a partir de la función P(E) de un detector del mismo material, pero con diferentes dimensiones. Despejando f(E) de la ecuación (3.44), se obtiene

$$f(E) = -\frac{1}{L} \cdot ln \left[(1 - P(E)) \left(\frac{\sigma^s}{e^\sigma} \right)^{-1} \right]$$
(3.46)

Con los datos de P(E) de Vegors & et al, ver Ref. [29, p. 81], para un detector con dimensiones Ø4.445 $cm \times 5.08 cm$ de NaI(Tl), y valuando la ecuaciones (1.26) y (1.28) para las mismas energías utilizadas por Vegors & et al, se tiene que los valores f(E) son los que se presentan en la tabla 3.1.

Tabla 3.1. Valores de f(E) para la razón pico-total, datos tomados de Vegors & et al, Ref. [29]. Fuente: elaboración propia.

Isótopo	Energía [KeV]	P(E)	$\sigma^s/_e\sigma$	f(E) [1/cm]
$^{47}\mathrm{Sc}$	160	0.95	0.8146	0.9025
$^{51}\mathrm{Cr}$	320	0.72	0.7215	0.3061
$^{7}\mathrm{Be}$	478	0.54	0.6675	0.1204
$^{137}\mathrm{Cs}$	662	0.39	0.6145	0.0024
$^{54}\mathrm{Mn}$	835	0.34	0.5861	-0.0384
$^{65}\mathrm{Zn}$	1116	0.27	0.5468	-0.0935
24 Na	1369	0.25	0.5143	-0.1220
24 Na	2754	0.13	0.4302	-0.2278
$^{37}\mathrm{S}$	3103	0.11	0.4094	-0.2511
	L=:	3.092 cn	n	

Utilizando los valores de la tabla 3.1, se tiene que la regresión no lineal de f(E), para la razón pico-total, queda

$$f(E) = 1.78877 \left(\frac{E}{100}\right)^{-1.26477} - 0.06953 \left(\frac{E}{100}\right)^{0.39469}$$
(3.47)

Sustituyendo en la ecuación (3.44), las ecuaciones (3.45), (3.47), (1.26) y (1.28) y luego evaluando para cada uno de los valores de energía de la tabla 2.3, se obtiene la razón pico-total del detector de NaI(Tl) para las energías mencionadas. Ver tabla 3.2.

Tabla 3.2. Valores de angulación con su respectiva energía, atenuación de rayos gamma en el dispersor, eficiencia del detector de NaI(Tl) y razón pico-total del detector de NaI(Tl). Fuente: elaboración propia.

Angul.	Ene.[keV]		Ajustes	
$(\theta \pm 2.5^{\rm o})$	$(E_0^{exp} \pm \frac{\Gamma}{2})$	$\eta(E,\theta)$	$\epsilon(E)$	P(E)
30.8	548 ± 21	0.888 ± 0.013	0.810 ± 0.009	0.466 ± 0.013
55.8	427 ± 24	0.878 ± 0.014	0.871 ± 0.014	0.56 ± 0.02
65.8	369 ± 26	0.872 ± 0.014	0.906 ± 0.017	0.61 ± 0.03
75.8	315 ± 22	0.866 ± 0.015	0.942 ± 0.015	0.68 ± 0.03
90.8	274 ± 19	0.861 ± 0.015	0.968 ± 0.011	0.74 ± 0.03
120.8	215 ± 15	0.855 ± 0.015	0.994 ± 0.004	0.83 ± 0.03

Aplicando los valores de la tabla 3.2, las ecuaciones (3.6), (3.5), (3.36), y t=600 seg en la ecuación (3.38) se generan los datos de la tabla 3.3, los cuales permiten visualizar la proporcionalidad de la sección eficaz diferencial de Klein-Nishina y las cuentas C(E), medidas en el foto-pico.

Tabla 3.3. Proporcionalidad de la sección eficaz diferencial de Klein-Nishina y las cuentas C(E), medidas en el foto-pico. Estas medidas deben de multiplicarse por un factor de 10^{-26} , debido al orden de magnitud de la sección eficaz diferencial de Klein-Nishina. Fuente: elaboración propia.

$\frac{\text{Ángulo}}{(\theta \pm 2.5)[^{\text{o}}]}$	$\left(\frac{d_e\sigma}{d\Omega}\right)_{\theta} \left[\frac{cm^2}{\text{elec}}\right]$	$\frac{1}{n_e \cdot g \cdot t \cdot \Omega_2} \cdot \frac{C(E)}{\eta(E) \cdot \epsilon(E) \cdot P(E)} \left[\frac{cm^2}{\text{elec}} \right]$
30.8	5.24	1.07 ± 0.15
55.8	3.02	0.52 ± 0.07
65.8	2.51	0.45 ± 0.07
75.8	2.18	0.41 ± 0.06
90.8	1.95	0.44 ± 0.06
120.8	2.19	0.28 ± 0.04

4. Resultados

A continuación se presentan los resultados obtenidos del experimento. Todos los errores se calcularon utilizando el método de las derivadas parciales, tal y como se describe en la sección A.4 del apéndice.

4.1. Verificación y cuantificación de la energía del fotón disperso en el Efecto Compton

En la tabla 4.1 y en la figura 4.1 Se presenta la comparación entre los valores resultantes de la ecuación (1.22) y los valores E_0 de las tablas 2.2, A.10, A.11, A.12, A.13 y A.14.

Angulación	E^{teo} [$l_{ro}V$]	$(F^{\exp} \perp \Gamma)$ [leoV]	$\operatorname{Precisión}\%$	Exactitud %
$(\theta \pm 2.5^{\circ})$	L_0 [KeV]	$(L_0 \perp \overline{2})$ [KeV]	de E_0^{\exp}	E.R.I
0.8	661.9	658 ± 21	3.19	-0.59
30.8	559.7	548 ± 21	3.83	-2.09
55.8	422.4	427 ± 24	5.62	1.09
65.8	375.2	369 ± 26	7.05	-1.65
75.8	334.7	315 ± 22	6.98	-5.89
90.8	288.4	274 ± 19	6.93	-4.99
120.8	223.7	215 ± 15	6.98	-3.89

Tabla 4.1. Comparación entre la energía esperada y la obtenida experimentalmente del fotón disperso debido al Efecto Compton. Fuente: elaboración propia.

Figura 4.1. Comparación entre la energía esperada para el fotón disperso debido al Efecto Compton, según ecuación (1.22) y datos experimentales, Ver tabla 4.1. Fuente: elaboración propia.

4.2. Verificación de la variación de la energía respecto al ángulo de dispersión del Efecto Compton y obtención de la energía de la masa en reposo del electrón

En la figura 4.1 se puede observar que el efecto de dispersión de Compton no se comporta de manera lineal respecto a las variaciones angulares. Sin embargo utilizando los valores de la tabla 4.1 y sustituyéndolos en la ecuación (1.23), se puede observar que el inverso de la energía del fotón disperso, es proporcional a $(1 - \cos \theta)$. Ver figura 4.2.

$1 - \cos(\theta)$	$(1/E) \times 10^{-3} [1/keV]$				
$(0.1 \pm 0.6) \times 10^{-3}$	$1.52 {\pm} 0.05$				
$0.14{\pm}0.02$	$1.82{\pm}0.07$				
$0.44 {\pm} 0.04$	$2.39{\pm}0.12$				
$0.59 {\pm} 0.04$	$2.67 {\pm} 0.11$				
$0.75 {\pm} 0.04$	$332 {\pm} 0.2$				
$1.01 {\pm} 0.04$	$3.6 {\pm} 0.2$				
$1.51 {\pm} 0.04$	$4.6 {\pm} 0.3$				
$E_0 = 662 \text{ keV}$					
$m_0 c^2 = (489 \pm 8) \text{ keV}$					

Tabla 4.2. Valores de la linearización de la ecuación de dispersión del Efecto Compton, según la ecuación (1.23). Fuente: elaboración propia.

Figura 4.2. Linearización de la ecuación de dispersión del Efecto Compton, según la ecuación (1.23). Fuente: elaboración propia.

4.3. Verificación de la proporcionalidad entre el número de conteos en el detector y la sección eficaz diferencial de Klein-Nishina del dispersor

Se comparan las cuentas corregidas del foto-pico con la sección eficaz diferencial de Klein-Nishina, ambas presentes en la ecuación (3.39) y se asigna el factor k que produce el mejor ajuste. Ver tabla 4.3.

Tabla 4.3. Comparación entre las cuentas corregidas del foto-pico contra la sección eficaz diferencial de Klein-Nishina con el factor k que produce el mejor ajuste en la ecuación (3.39). Las medidas mencionadas anteriormente deben de multiplicarse por un factor de 10^{-26} , debido al orden de magnitud de la sección eficaz diferencial de Klein-Nishina. Fuente: elaboración propia.

$(\theta \pm 2.5)[^{\rm o}]$	$k\left(\frac{d_e\sigma}{d\Omega}\right)_{\theta}\left[\frac{cm^2}{\text{elec}}\right]$	$\frac{1}{n_e \cdot g \cdot t \cdot \Omega_2} \cdot \frac{C(E)}{\eta(E) \cdot \epsilon(E) \cdot P(E)} \left[\frac{cm^2}{\text{elec}} \right]$	Exactitud % E.R.I
30.8	1.02	1.07 ± 0.15	4.90
55.8	0.59	0.52 ± 0.07	-11.86
65.8	0.49	0.45 ± 0.07	-8.16
75.8	0.42	0.41 ± 0.06	-2.38
90.8	0.38	0.44 ± 0.06	15.79
120.8	0.43	0.28 ± 0.04	-34.88
		$k{=}0.195$	

Figura 4.3. Visualización de los ajustes a la distribución de Lorentz de los datos de los foto-picos, debido al efecto de dispersión de Compton. Ver la sección A.6.1 y las tablas 2.2 y A.8. Fuente: elaboración propia.

4.4. Discusión de resultados

La determinación del error sistemático permitió el aumento de la exactitud de los valores de energía obtenido. Por lo que, aunque bastante difíciles de determinar, estos pueden jugar un papel decisivo en la exactitud del experimento.

Debido a la forma en la que se consideraron los errores de las energías obtenidas, $\Delta E = \Gamma/2$, resulta que la precisión, ver ecuación (1.12), está estrechamente relacionada con la resolución del material detector, R[%] = 2Pres[%].

La relación que existe entre la energía y la angulación no es lineal y esta queda demostrada experimentalmente. Sin embargo si existe una relación lineal entre el inverso de la energía y $(1 - \cos \theta)$. Esta linealidad permite obtener de manera experimental la energía de la masa en reposo del electrón. Las implicaciones de haber podido medir el valor de la masa en reposo del electrón, que a primera vista, según la ecuación (1.23), parece bastante obvio de obtener, es que permite relacionar conceptos cuánticos, como el fotón, con conceptos clásicos, como la masa del electrón, por medio de un experimento de dimensiones macroscópicas.

La proporcionalidad entre las cuentas en el foto-pico y la sección eficaz diferencial de Klein-Nishina, nace de la estrecha relación que estas cantidades mantienen; la sección eficaz diferencial de Klein-Nishina, da la probabilidad de que los fotones incidentes sean dispersados un ángulo θ , mientras que las cuentas en el foto-pico, son esos fotones dispersos que lograron ser detectados. Se mantiene como una proporcionalidad, debido a que el detector no tiene una eficiencia del 100 % y por lo tanto, no puede detectar todos los eventos de dispersión ocurridos.

CONCLUSIONES

En el presente trabajo se abordo el problema de modelar analíticamente todos los procesos que se llevan a cabo para producir el efecto Compton y de la misma manera realizarlos experimentalmente y, de esta forma, poder compararlos.

- 1. Se cuantificó experimentalmente la energía del fotón disperso debido al efecto Compton con un error porcentual, i.e. la precisión, máxima del 7.05 % y mínima del 3.19 %. Un error relativo intrínseco, i.e. la exactitud, respecto a la energía calculada con un máximo del 5.89 % y un mínimo del 0.59 %. Ver tabla 4.1.
- 2. Se verificó que el inverso de la energía del fotón disperso, es proporcional a $(1 \cos \theta)$. Ver figura 4.2.
- 3. Se determino que la energía de la masa del electrón en reposo es (489 ± 8) keV. Con un E.R.I. del 4.3050 % respecto al valor de $(510.998928 \pm 0.000011)$ keV presente en la literatura, ver Ref. [17, p.1587].
- 4. Se verifica y confirma la proporcionalidad entre el número de conteos en el detector y la sección eficaz diferencial de Klein-Nishina del dispersor, teniendo estos una factor de proporcionalidad de 0.195. El error relativo intrínseco, es decir, la exactitud del número de conteos respecto a la sección eficaz diferencial de Klein-Nishina del dispersor, tiene un máximo del 34.88 % y un mínimo del 2.38 %. Ver tabla 4.3.
RECOMENDACIONES

- 1. Realizar la demostración de la ecuación diferencial de la sección eficaz diferencial de Klein-Nishina.
- 2. Promover la investigación conjunta entre el Laboratorio de Instrumentación de la Escuela de Ciencias Físicas y Matemáticas de la Universidad de San Carlos de Guatemala y el Laboratorio Secundario de Calibración Dosimétrica del Ministerio de Energía y Minas de Guatemala, en el área de instrumentación nuclear, con el fin de promover la realización de experimentos en área de física nuclear y de esta manera, poder incrementar las capacidades nacionales en cuanto a los usos pacíficos de la energía nuclear.

BIBLIOGRAFÍA

- G. B. Arfken. Mathematical Methods for Physicists [Métodos Matemáticos para Físicos]. 3rd edition. Academic Press, Inc., Orlando. 1985.
- [2] F. H. Attix. Introduction to Radiological Physics and Radiation Dosimetry [Introducción a la Física Radiológica y Dosimetría de la Radiación]. 1st edition. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2004.
- [3] P. R. Bevington & D. K. Robinson. Data Reduction and Error Analysis for the Physical Science [Reducción de Datos y Análisis de Error para la Ciencia Física]. 3th edition. McGraw-Hill Science, Engineering and Mathematics. New York, 2002.
- [4] K. P. Burnham & D. R. Anderson. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach [Selección del Modelo e Inferencia Multi-modelo: Un Enfoque Práctico-Teórico de la Información]. 2nd. edition. Springer-Verlag New York, Inc. New York. (2002).
- [5] A. Cesana, & M. Terrani. An Empirical Method for Peak-to-Total Ratio Computation of a Gamma-Ray Detector [Método empírico para el cálculo de la razón pico-total de un detector de rayos gamma]. Nucl. Instrum. Methods phys. Research A 281, 172-175. (1989).
- [6] J. Cook. Solid angle subtended by two rectangles [Angulo Sólido Subtendido por dos rectángulos]. Nucl. Instrum. Methods 178, 561-564 (1980).
- [7] R. D. Evans. *The Atomic Nucleus* [El Núcleo Atómico]. 1st edition. McGraw-Hill, New York. 1955.
- [8] J. Felsteiner, P. Pattison & M. Cooper. Effect of multiple scattering on experimental Compton profiles: a Monte Carlo calculation [Efecto de la dispersión múltiple en perfiles experimentales de Compton: Un cálculo por Monte Carlo]. *Philos. Mag.* 30:3, 537-548. (1974).
- [9] H. Gotoh & H.Yagi. Solid angle subtended by a rectangular slit [Ångulo sólido subtendido por una rendija rectangular]. Nucl. Instrum. Methods 96, 485-486. (1971).
- [10] A. Hamzawy. Validation of analytical formula for the efficiency calibration of gamma detectors using coaxial and off-axis extended sources [Validación de

fórmula analítica para la calibración de la eficiencia de los detectores gamma utilizando fuentes extendida coaxiales y fuera de eje]. *Nucl. Instrum. Methods phys. Res. A* **618**, 216-22. (2010).

- [11] G. F. Knoll. Radiation Detection and Measurement [Medición y Detección de la Radiación]. 4th edition. John Wiley & Sons, Inc. New York, 2010.
- [12] W. R. Leo. Techniques for Nuclear and Particle Physics Experiments. A How-to Approach [Técnicas para Experimentos en la Física Nuclear y de Partículas .Con Enfoque en como Realizarlos]. 2nd edition. Springer-Verlag Berlin Heidelberg GmbH, New York. 1994.
- [13] W. B. Mann, A. Rytz, & A. Spernol. *Radioactivity Measurements* [Mediciones de la radiactividad]. 1nd edition (revised). Pergamon Press plc, Headington Hill Hall. 1991.
- [14] W. Mannhart & H. Vonach. Gamma-ray absorption coefficients for NaI(Tl) [Coefficientes de absorción de rayos gamma para Na(Tl)]. Nucl. Instrum. Methods 134, 347-351.(1976).
- [15] A. C. Melissinos & J. Napolitano. Experiments in Modern Physics [Experimentos en Física Moderna]. 2nd edition. Academic Press, Inc., New York, 2003.
- [16] MIT Department of Physics. Compton Scattering [Dispersión de Compton]. Cambridge, MA: Massachusetts Institute of Technology. (2013).
- [17] P. J. Mohr, B. N. Taylor & D. B. Newell. CODATA recommended values of the fundamental physical constants: 2010 [CODATA Valores recommendados de las constantes físicas fundamentales: 2010]. *Rev. Mod. Phys.* 84, 1527-1605. (2012).
- [18] National Nuclear Security Administration, Office of Radiological Security. Nociones fundamentales sobre la radiación Modulo 3. Dado por P. Ladd (expositor). Seminario sobre concientización de la seguridad física para el transporte de materiales radiactivos (SA-100). Ponencia realizada por Oak Ridge National Laboratory. Ciudad de Guatemala. (2016, Junio).
- [19] Organismo Internacional de Energía Atómica. Clasificación de las fuentes radiactivas. Colección de normas de seguridad del OIEA No. RS-G-1.9, OIEA, Viena, 2009.
- [20] Organismo Internacional de Energía Atómica. Glosario de Seguridad Tecnológica del OIEA, Terminología Empleada en Seguridad Tecnológica Nuclear y Protección Radiológica (Edición 2007). OIEA, Viena, 2008.
- [21] J. Pérez-Calatayud, D. Granero, E. Casal, F.Ballester, & V. Puchades. Monte Carlo and experimental derivation of TG43 dosimetric parameters for CSMtype Cs-137 source [Derivación experimental y por Monte Carlo de los parámetros dosimétricos TG43 para una fuente de Cs-137 tipo CSM]. Med. Phys. 32, 28-36.(2005).

- [22] J. R. Taylor. An Intruduction to Error Analysis [Introducción al análisis de error]. 1st edition. University Science Book. United States of America. 1982.
- [23] S. Tryka. Calculation of the solid angle subtended by a cylinder at a point [Cálculo del ángulo sólido subtendido por un cilindro en un punto]. Appl. Radiat. Isot. 70, 2466-2470. (2012).
- [24] L.Ruby & J.B Rechen. A simpler approach to the geometrical efficiency of a parallel-disk source and detector system [Un enfoque más simple de la eficiencia geométrica para el sistema conformado por una fuente paralela de disco y detector]. Nucl. Instrum. Methods 58, 345-346. (1968).
- [25] L. Ruby. Further comments on the geometrical efficiency of a parallel-disk source and detector system [Comentarios adicionales sobre la eficiencia geométrica para el sistema conformado por una fuente paralela de disco y detector]. Nucl. Instrum. Methods phys. Research A 337, 531-537. (1994).
- [26] S. Konishi, & G.kitagawa. Information Criteria and Statistical Modeling [Criterio de la información y modelado estadístico]. 1st edition. Springer Science+Business Media, LLC, New York. 2008.
- [27] A.-N. Spiess, & N. Neumeyer. An evaluation of R² as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach [Evaluación de R² como una medida inadecuada para modelos no lineales en investigaciones de farmacología y bioquímica]. BMC Pharmacology 10:6. (2010). http://doi.org/10.1186/1471-2210-10-6
- [28] H. Vega. Geometrical efficiency for a parallel disk source and detector [Eficiencia geométrica para una fuente de disco en paralelo y un detector]. Nucl. Instrum. Methods phys. Research A 371, 535-537. (1996).
- [29] S.H. Vegors Jr., L.L. Marsden, & R.L. Heath. Calculated efficiencies of cylindrical radiation detector [Eficiencias calculadas para detectores de radiación cilíndricos]. AEC Report IDO 16370. (1958).
- [30] Walter R. & French Jr.. Precision Compton-Effect Experiment [Experimento de precisión sobre el efecto Compton]. Am. J. Phys. 33(7), 523-527. (1965).

APÉNDICE

A.1. Sobre la Protección Radiológica

Se expanden ciertos conceptos importantes sobre la protección radiológica, pertinentes durante la realización del experimento.

A.1.1. Determinación de la peligrosidad de la fuente

En el ámbito de la protección radiológica, el riesgo o peligro siempre se debe sobrestimar. Por lo tanto, para realizar el cálculo de la peligrosidad de la fuente utilizada en el experimento, se utiliza la actividad nominal de esta.

Se utilizó el sistema de clasificación de fuentes radiactivas propuesto por el OIEA, ver Ref.[19]. En la mencionada guía de seguridad se clasifican, basándose en el riesgo, las fuentes y las prácticas radiactivas conforme a cinco categorías. Las fuentes de categoría 1 son consideradas las mas peligrosas, debido a que pueden suponer un riesgo altísimo para la salud de los seres humanos si no se manejan en condiciones de seguridad tecnológica y física. Las fuentes de categoría 5 son consideradas las menos peligrosas. Este sistema se basa en el concepto de «Fuentes peligrosas», el cual está cuantificado en términos de los valores D. El valor D es la actividad específica de los radionucleidos de una fuente que, de no hallarse bajo control, podría causar graves efectos deterministas en diversas circunstancias hipotéticas, entre ellas la exposición externa procedente de una fuente no blindada y la exposición interna a raíz de la dispersión del material de la fuente.

Proporción de la actividad =
$$\frac{A}{D}$$
 (A.1)

donde A es la actividad de la fuente dada en Tbq, la actividad nominal de la fuente de ¹³⁷Cs es de 0.00210 Tbq. El valor D para el ¹³⁷Cs, dado en Tbq, es de 0.1. Los valores D para el ¹³⁷Cs y otros radionucleidos se encuentran listados en Ref.[19, Cuadro II-2]. La proporción de la actividad para la fuente utilizada en el experimento es de 0.0210, haciendo uso de Ref.[19, Cuadro 1], se puede observar que la fuente tiene una peligrosidad de categoría 4.

A.1.2. Sobre la manipulación segura de fuentes radiactivas.

Siempre que se esté en presencia de radiaciones ionizantes se debe poner el símbolo del trisector, para alertar a las demás personas del posible peligro, debido a las radiaciones ionizantes. Ver figura A.1.

Figura A.1. Símbolo recomendado por el OIEA cuando se está en presencia de radiaciones ionizantes (negro sobre un fondo amarillo). Fuente: imagen tomada de Ref. [13, p. 40].

En el procedimiento descrito en la sección 2.3.1 para la manipulación de la fuente se aplican ciertas recomendaciones estándar aceptadas por la comunidad internacional. Estas recomendaciones son conocidas como ALARA (del ingles, As Low As Reasonably Achievable) o «Tan bajo como sea razonablemente posible». Las recomendaciones ALARA en principio, señalan que, en presencia de radiación, la dosis total se puede reducir de tres maneras diferentes: reduciendo el TIEMPO de exposición, aumentando la DISTANCIA de la fuente radiactiva y aumentando el BLINDAJE entre la fuente y la persona. Con estas recomendaciones se logra cubrir los requerimientos de protección radiológica que sugiere el OIEA. A continuación se describe el procedimiento:

Tiempo: Se cronometró el procedimiento, desde la colocación de los guantes plomados hasta la inserción de la fuente en el colimador grande. Todo el procedimiento lleva en promedio 80 *seg*.

Distancia: Utilizando las pinzas especiales para la manipulación de la fuente,

éstas tiene una longitud de 0.21 m.

Blindaje: Utilizando los guantes plomados, la mampara plomado y el colimador.

Figura A.2. Principio ALARA. Fuente: imagen tomada de Ref. [18, p. 18].

A.2. Coeficientes totales de atenuación

Debido a la dependencia energética de los coeficientes de atenuación, se hace necesario el realizar regresiones no lineales de algunos materiales utilizados en experimento.

Coeficiente de atenuación Pb A.2.1.

Para el plomo se trabajó la regresión con un polinomio de grado cuatro.

$$\mu_{Pb}(E) = a_0 + a_1 E + a_2 E^2 + a_3 E^3 + a_4 E^4 \tag{A.2}$$

Tabla A.1. Factores a_i de la regresión polinomial utilizados para obtener el coeficiente de atenuación del Pb en función de la energía. Fuente: elaboración propia.

Coeficientes	
a_0	$1.75656600\mathrm{E}{+}01$
a_1	-7.82425980E-02
a_2	1.45428885E-04
a_3	-1.23591825E-07
a_4	3.96427500E-11

Energía [keV]	Coef. at enuación $[1/\rm{cm}]$
400	2.64222
500	1.830276
600	1.416366
800	1.004724
1000	0.802872
1500	0.587412

Tabla A.2. Coeficientes de atenuación del Pb para interacciones con fotones 1/cm. Fuente: tomada de Ref. [2, Apendice D.3].

A.2.2. Coeficiente de atenuación Al

Para el aluminio se trabajó la regresión con un polinomio de grado cuatro.

$$\beta(E) = a_0 + a_1 E + a_2 E^2 + a_3 E^3 + a_4 E^4 \tag{A.3}$$

Tabla A.3. Factores a_i de la regresión polinomial utilizados para obtener el coeficiente de atenuación del Al en función de la energía. Fuente: elaboración propia.

Coeficientes	
a_0	4.08300404697190E-01
a_1	-5.89184697678690E-04
a_2	6.01234356853560E-07
a_3	-3.24969225767070E-10
a_4	6.99991569996670E-14

Tabla A.4. Coeficientes de atenuación del Al para interacciones con fotones 1/cm. Fuente: tomada de Ref. [2, Apendice D.3].

Energía [keV]	Coef. atenuación $[1/cm]$
400	0.2498348
500	0.2277112
600	0.2101742
800	0.1840036
1000	0.1653874
1500	0.1349

A.2.3. Coeficiente de atenuación NaI(Tl)

Para el Yoduro de sodio dopado con talio, se trabajó la regresión con un polinomio de la forma

$$\omega(E) = A_0 \left(\frac{E}{100}\right)^{a_0} + B_0 \left(\frac{E}{100}\right)^{b_0}$$
(A.4)

Tabla A.5. Factores a_i de la regresión no lineal utilizados para obtener el coeficiente de atenuación del NaI(Tl) en función de la energía. Fuente: elaboración propia.

Coeficientes	
A_0	0.7184098194
a_0	-0.5209439630661
B_0	5.6362885763
b_0	-3.0712792024

Tabla A.6. Coeficientes de atenuación del NaI(Tl) para interacciones con fotones 1/cm. Fuente: tomada de Ref. [14].

Energía [keV]	Coef. atenuación $[1/cm]$
400	0.2498348
500	0.2277112
600	0.2101742
800	0.1840036
1000	0.1653874
1500	0.1349

A.3. Determinación del tamaño de campo del haz colimado de radiación a 0.30 m de distancia

Para poder calcular el Volumen V de la ecuación (3.3) y el ángulo sólido Ω_1 de la ecuación (3.28), se vuelve imperativo el saber el radio del tamaño del campo del haz de radiación. Para lograr este cometido, se utilizó el programa de edición de imágenes GIMP 2.8.14, por medio del cual, se midió el diámetro en píxeles de ambas radiografías y estableciendo una relación lineal entre un milímetro de la escala presente en la imagen, ver imagen A.3, y la cantidad de píxeles a la que equivale este milímetro, se determinó el diámetro de ambas radiografías en milímetros.

Los valores de diámetro obtenidos para las radiografías A y B, de la figura A.3, son 18.29 mm y 18.43 mm respectivamente. Tomando como el valor del diámetro el promedio de los datos y aplicando la desviación estándar para el error de la medida, el valor del diámetro del campo, a una distancia de 0.30 m desde el centro geométrico del colimador hasta el centro del dispersor, son los valores que se detallan en la tabla A.7.

Todo experimento que se realice está sujeto, de alguna manera, a los errores sistemáticos. Inclusive después de que se a hecho hasta lo inimaginable para entender el equipo y corregir todas los defectos y posibles errores en la calibración, se

Figura A.3. Imagen del tamaño de campo del haz colimado del radiación a 0.30 m, la escala inferior está dada en milimetros. Los valores de diámetro obtenidos para las radiografías A y B, son 18.29 mm y 18.43 mm respectivamente. Fuente: elaboración propia.

llega a un punto donde no es posible adquirir mejor información. En este caso en particular, se encontró un error sistemático en el colimador, ya que éste presenta un desface respecto al centro geométrico del experimento, afectando a la medición del ángulo medido desde el centro geométrico de la salida del haz colimado de radiación.

Figura A.4. Imagen del error sistemático del colimador. El 1 indica el centro geometrico y el 2 el centro del haz de radiación. Fuente: elaboración propia.

De la figura A.4 se considera la distancia que existe, desde la línea perpendicular a la vertical que pasa por el punto 1, hasta el punto 2. Esta línea perpendicular tiene una longitud de $(4.2 \pm 0.1) mm$ por lo que tomando en cuenta la distancia desde el centro geométrico del colimador hasta el centro del dispersor, la cual es de (300 ± 1) mm, se obtiene que todas las medidas están desfasadas por, ver tabla A.7.

Tabla A.7. Resultados de las radiografías del tamaño de campo del haz de radiación tomadas a 0.30 m de distancia. Fuente: Elaboración propia.

Diámetro tamaño de campo	Error sistemático
$D_c = (18.36 \pm 0.10) \text{ mm}$	$0.80^{\circ} \pm 0.02^{\circ}$

A.4. Análisis de incertezas

Suponga que se tienen x_0, x_1, \ldots, x_n medidas con sus respectivas incertezas y estas medidas sirven para calcular el valor de una función $q(x_0, x_1, \ldots, x_n)$. Si las incertezas en x_0, x_1, \ldots, x_n son aleatorias e independientes, entonces la incerteza de la función $q(x_0, x_1, \ldots, x_n)$ está dada por

$$\Delta q = \sqrt{\left(\frac{\partial q}{\partial x_0} \Delta x_0\right)^2 + \dots + \left(\frac{\partial q}{\partial x_n} \Delta x_n\right)^2} \tag{A.5}$$

Debido a que muchas de las funciones evaluadas a lo largo del trabajo son integrales, las cuales se evaluaron por métodos numéricos, se presenta el método general para poder calcular el error en dichas funciones.

Suponga que se tiene una función $G(a_0, a_1, ..., a_n, b, x)$ de la cual nos interesa el error de la función G luego de integrarla respecto a x desde 0 hasta b. Aquí $a_0, a_1, ..., a_n$ y b son medidas que poseen sus respectivas incertezas y la integral analítica de la función G respecto a x es muy complicada o no existe, por lo tanto, deben emplearse métodos numéricos de integración. De la información anterior, se puede observar que las medidas con incerteza, son independientes de la variable de integración. Los operadores derivada e integral son linealmente independientes, tomando esto en cuenta y haciendo uso de la ecuación (A.5), se obtiene

$$(\Delta G)^{2} = \left(\frac{\partial}{\partial a_{0}} \left[\int_{0}^{b} F dx\right] \Delta a_{0}\right)^{2} + \dots + \left(\frac{\partial}{\partial a_{n}} \left[\int_{0}^{b} F dx\right] \Delta a_{n}\right)^{2} \\ + \left(\frac{\partial}{\partial b} \left[\int_{0}^{b} F dx\right] \Delta b\right)^{2} \\ (\Delta G)^{2} = \left(\left[\int_{0}^{b} \frac{\partial F}{\partial a_{0}} dx\right] \Delta a_{0}\right)^{2} + \dots + \left(\left[\int_{0}^{b} \frac{\partial F}{\partial a_{n}} dx\right] \Delta a_{n}\right)^{2} \\ + \left(\left[\int_{0}^{b} \frac{\partial F}{\partial b} dx\right] \Delta b\right)^{2}$$
(A.6)

donde la integral de G respecto x se puede realizar utilizando métodos numéricos.

A.5. Criterios para el análisis espectral

Se presentan los criterios utilizados para la adquisición y procesamiento de los espectros obtenidos en las diferentes angulaciones.

A.5.1. Criterio de la información de Akaike

En un modelo de regresión polinomial, la tarea crucial es el determinar el grado p del polinomio, un modelo de un grado muy bajo no puede representar la estructura de los datos de manera adecuada, mientras que un modelo de grado muy alto, provoca que el modelo reaccione de manera exagerada a las variaciones aleatorias en los datos, por ende escondiendo información esencial. Con el fin de evitar lo anterior, se utiliza el *Criterio de la Información de Akaike* (CIA) para poder definir el grado del polinomio de la mejor manera. El CIA mide la calidad relativa de un conjunto de posibles ajustes, tomando en cuenta la calidad del ajuste, junto con el número de parámetros usados en el ajuste. Si los coeficientes de todos los modelos del conjunto fueron calculados utilizando un método de mínimos cuadrados y se asumen con errores distribuidos de manera normal con una varianza constante, el CIA puede calcularse de la siguiente manera

$$CIA_{p} = n \cdot ln \left[\frac{1}{n} \sum_{j=1}^{n} \left(y_{j}(E) - \sum_{i=0}^{p} a_{i}E^{i} \right)^{2} \right] + 2(p+2)$$
(A.7)

donde $y_j(E)$ es la cantidad de cuentas con una energía $E \ge n$ la cantidad de datos del espectro. Luego de calculado el CIA_p, se debe de seleccionar el polinomio que obtenga el valor CIA_p mas pequeño.

A.5.2. Criterio de selección del ancho del foto-pico

El valor de la resolución R del foto-pico está relacionado con el FWHM por medio de la ecuación (1.12). Reordenando los elementos de la ecuación (1.15), se tiene que

$$FWHM = K\sqrt{E_0} = R(E_0) \tag{A.8}$$

si se considera el ancho del foto-pico como 4 FWHM, este queda como

$$\Delta_{fp} = 4(K\sqrt{E_0}) \tag{A.9}$$

donde K es una constante de proporcionalidad especifica de cada detector, la cual se obtiene luego de analizar un espectro de referencia.

A.5.2.1. Cálculo de la constante K, de la ecuación (1.15), para el NaI(Tl) y análisis del espectro de referencia del ¹³⁷Cs

Según Knoll [11, p. 347], un cristal de NaI(Tl) de buena calidad puede lograr una resolución R de entre 6-7% a una energía de 662 keV. Para los conteos de la distribución a 0.8°, de la tabla A.9, se asume como punto de partida una resolución de 7% y que el valor E_0 de la ecuación (1.12) corresponde a la energía con el mayor número cuentas. Por lo que E_0 es igual a 660 keV, entonces, se estima que el FWHMes 46.2 keV. Haciendo uso de las ecuaciones (A.8) y (A.9), se tiene que el primer estimado de Δ_{fp} para los conteos de la distribución a 0.8°, de la tabla A.9, es de 183.74 keV. Por lo que el rango que se considerara para la regresión no lineal utilizando la distribución del Lorentz es de 567 a 750 keV. Se determino de manera visual que el polinomio que mejor se ajusta es el de grado 8.

Con la función F(E) ya definida para el espectro de referencia, se realiza la resta de los conteos de la distribución a 0.8° , de la tabla A.9, menos la función F(E). Al resultado de está resta, se le considera como las cuentas en el foto-pico. A las cuentas en el foto-pico se le ajusta la distribución de Lorentz, presentada en la ecuación (1.10). Los coeficientes del ajuste, obtenidos para la función S(E) del espectro de referencia, se presentan en la tabla A.8.

Tabla A.8. Coeficientes obtenidos de la regresión polinomial de la funcion S(E) del espectro de referencia. Fuente: elaboración propia.

Coeficientes	
a_0	$5.673288283682150\mathrm{E}{+03}$
a_1	$-8.894007888356750\mathrm{E}{+}01$
a_2	$5.191898299717790\mathrm{E}{+00}$
a_3	-5.766537918854360E-02
a_4	2.968555049387660E-04
a_5	-8.152180059975170E-07
a_6	1.223111797862240E-09
a_7	-9.447358181611730E-13
a_8	2.938576343991160 E-16
A_0	6518381.39
E_0	657.45~keV
$\Gamma_{(FWHM)}$	$45.85 \ keV$

Sustituyendo los valores Γ y E_0 , de la tabla A.8, en la ecuación (A.8) se tiene que el valor de K para el NaI(Tl) es de

$$K_{NaI} = 1.7880422 \tag{A.10}$$

En la figura A.5 se presentan las gráficas de las funciones S(E), F(E) y $P_L(E)$ del espectro de referencia.

corresponde a la función F(E) y el área bajo la curva [---] a la función $P_L(E)$. Fuente: elaboración propia. Figura A.5. Comparación de las cuentas totales contra la función S(E) del espectro de referencia. El área bajo la curva $[\cdots - \cdots]$

A.6. Datos espectrales

A continuación Se presentan los datos obtenidos luego de realizar los procedimientos referentes a la adquisición de datos de la sección 2.3.1.

Tabla A.9. Datos obtenidos de los espectros luego de sustraer el fondo natural radiactivo. Se toman en consideración los errores sistemáticos de los equipos, ver tabla A.4. Fuente: elaboración propia.

Energía	Angulación $\pm 2.5^{\circ}$								
[keV]	0.8^{o}	30.8°	55.8°	65.8°	75.8°	90.8°	120.8°		
18	2607	187	207	95	39	30	33		
21	4429	207	255	149	48	53	71		
24	5613	195	145	85	65	86	52		
27	6087	291	203	97	100	55	43		
30	6998	366	184	124	93	79	50		
33	7054	326	246	129	100	121	66		
36	7916	394	267	146	109	112	61		
39	8629	417	293	144	113	122	62		
42	7658	419	265	145	110	94	61		
45	8936	403	249	145	105	96	54		
48	9521	394	241	145	99	121	46		
51	8538	407	254	166	108	109	55		
54	9134	404	260	187	116	133	63		
57	9574	406	260	202	126	97	73		
60	10121	461	313	230	145	131	91		
63	11053	508	355	258	164	125	118		
66	11730	554	409	292	187	153	150		
69	11613	595	457	320	202	210	175		
72	13347	649	506	331	214	217	181		
75	12696	667	473	323	210	215	180		
78	12847	670	446	318	202	264	164		
81	12946	659	410	310	192	215	155		
84	12694	595	381	300	181	186	147		
87	12275	571	346	287	176	151	133		
90	12102	554	313	265	172	232	119		
93	12964	554	302	251	162	201	114		
96	12554	542	311	248	154	159	111		
99	13475	515	316	251	152	118	110		
102	12377	503	344	250	152	164	110		
105	13087	528	372	251	154	147	112		
108	12543	546	369	253	152	210	119		
111	13254	534	388	251	155	201	118		
	Continúa en la siguiente página								

Energía	Angulación $\pm 2.5^{\circ}$								
[keV]	0.8°	30.8°	55.8°	65.8°	75.8°	90.8°	120.8°		
114	14269	531	408	250	164	258	124		
117	13275	508	429	260	179	246	129		
120	13589	505	443	280	203	249	141		
123	13878	515	471	287	211	261	155		
126	14109	505	494	312	217	229	168		
129	14797	488	494	333	220	266	174		
132	13182	496	514	344	217	304	184		
135	14321	505	524	344	206	278	198		
138	14485	558	515	352	205	239	211		
141	13391	562	465	347	204	283	212		
144	13147	555	482	328	215	305	200		
147	13126	557	479	313	225	268	194		
150	14033	544	472	308	234	245	194		
153	14078	536	467	303	241	235	210		
156	13673	551	477	294	238	252	222		
159	14855	533	487	297	232	228	237		
162	15135	528	496	298	224	191	241		
165	15693	554	514	309	211	218	251		
168	16013	559	511	316	190	252	268		
171	16445	563	488	331	186	195	283		
174	17028	563	456	329	180	217	293		
177	16539	574	471	333	181	239	295		
180	16158	579	421	316	175	168	305		
183	16819	590	377	294	172	208	334		
186	16284	587	332	270	169	199	361		
189	17809	561	313	253	163	253	392		
192	17437	569	319	238	164	208	429		
195	17239	595	322	236	160	167	476		
198	16914	620	340	241	152	221	536		
201	17153	605	375	245	149	220	603		
204	17559	593	388	253	147	235	687		
207	17148	562	396	248	140	247	753		
210	16403	588	405	254	133	284	809		
213	16295	597	365	245	133	243	838		
216	15972	587	340	244	141	236	849		
219	16788	577	326	242	146	266	829		
222	15313	537	323	229	145	291	787		
225	15015	532	324	227	145	282	722		
228	14917	526	343	216	140	277	641		
231	16081	465	366	215	141	310	555		
234	16683	432	367	214	148	356	471		
	Continúa en la siguiente página								

Tabla A.9. – Continuación.

Energía		Lasia	Ang	ulación +	2.5°		
[keV]	0.8°	30.8°	55.8°	65.8°	75.8°	90.8°	120.8°
$\frac{1007}{237}$	15896	426	366	207	154	414	393
240	16333	422	372	218	160	365	307
243	16323	481	342	226	170	418	244
246	15921	476	323	235	183	499	184
249	15619	460	324	246	192	516	143
252	16236	465	312	253	201	610	110
255	14983	464	289	244	204	544	87
258	16907	461	277	239	204	617	67
261	15958	450	266	239	210	690	57
264	14984	420	255	235	224	721	48
267	16435	423	242	228	224	827	41
270	16537	405	246	215	230	884	35
273	16271	393	253	216	234	863	33
276	16273	402	236	209	239	859	33
279	16440	373	250	205	240	844	31
282	14621	367	249	205	248	831	32
285	15772	370	247	208	260	775	30
288	15812	398	230	214	318	741	25
291	15680	406	242	217	360	644	17
294	15701	440	246	232	398	593	19
297	16835	468	243	240	428	488	13
300	16579	465	257	249	463	439	10
303	17023	477	266	252	500	338	8
306	16354	462	275	262	532	261	9
309	16092	459	271	276	560	216	10
312	16632	456	253	288	572	202	10
315	16433	441	252	293	579	201	—
318	16784	428	253	299	575	158	—
321	16890	409	257	304	560	135	—
324	16699	389	265	320	536	124	—
327	17049	392	266	332	499	78	_
330	16624	384	265	350	462	74	
333	16010	342	281	358	413	65	_
336	17347	342	286	373	373	78	—
339	16082	288	293	385	322	23	—
342	16325	316	277	399	267	30	—
345	17843	319	263	409	219	10	—
348	16551	291	240	413	183	34	—
351	16151	288	231	432	148	56	—
354	17004	282	226	452	119	53	—
357	16753	273	238	477	101	33	—
				Co	ntinúa en	la siguient	te página

Tabla A.9. – Continuación.

Energía			Ang	ulación \pm	2.5°		
[keV]	0.8°	30.8°	55.8°	65.8°	75.8°	90.8°	120.8°
360	17253	254	249	497	84	40	_
363	17388	241	259	525	80	17	_
366	17311	227	272	535	73	_	_
369	17073	240	281	556	65	_	_
372	17101	230	298	560	52	_	_
375	17761	259	315	553	48	_	_
378	17891	270	336	538	41	_	_
381	17442	267	341	511	34	_	
384	17738	281	367	485	25	_	—
387	18124	257	400	464	19	_	
390	17390	242	424	427	17	_	_
393	16606	244	445	401	13	_	—
396	16852	248	462	374	15	_	_
399	17693	257	493	335	17	_	—
402	17901	260	522	308	15	_	_
405	18311	246	556	272	14	_	_
408	17419	255	586	240	19	_	_
411	17927	288	620	212	13	_	_
414	17652	283	644	190	_	_	_
417	17899	272	660	172	_	_	_
420	18330	251	664	156	_	_	_
423	17711	239	643	145	_	_	_
426	16542	252	632	144	_	_	_
429	17903	247	624	138	_	_	_
432	17187	247	617	121	_	_	_
435	15910	245	598	115	_	_	_
438	15725	240	581	99	_	_	_
441	15206	256	562	94	_	_	_
444	15584	279	538	87	_	_	_
447	14068	296	500	78	_	_	_
450	13460	315	462	65	_	_	_
453	13526	312	410	49	—	_	_
456	12403	341	355	38	_	_	_
459	11807	352	307	33	—	_	_
462	10891	345	275	26	_	_	_
465	9496	325	245	16	—	—	—
468	9081	313	208	17	—	_	—
471	8784	305	194	13	—	_	—
474	8175	314	175	16	—	_	—
477	8189	326	165	17	_	_	—
480	7174	348	139	17	_	_	_
				Cor	ntinúa en	la siguien	te página

Tabla A.9. – Continuación.

Energía		20.010	Ang	\pm	: 2.5°		
[keV]	0.8°	30.8°	55.8°	65.8°	75.8°	90.8°	120.8°
483	5668	356	124	17	_	_	_
486	6033	381	109	15	—	_	_
489	5912	420	87	17	_	_	_
492	5551	445	69	25	—	—	_
495	5647	475	64	20	—	—	_
498	5439	516	67	15	_	_	_
501	5314	549	60	11	_	_	_
504	5295	581	62	_	_	_	_
507	5227	624	58	_	_	_	_
510	4322	673	55	_	_	_	—
513	4477	706	52	_	_	_	—
516	4631	730	50	—	—	—	—
519	3969	768	48	—	—	—	—
522	4317	792	28	—	—	—	—
525	4371	821	28	—	—	—	—
528	4308	848	18	—	—	—	—
531	3977	889	14	—	—	—	—
534	4440	921	8	—	—	—	—
537	4094	946	6	—	—	—	—
540	3725	972	4	—	—	—	—
543	3749	997	—	_	_	_	—
546	4216	1015	_	—	—	—	—
549	3751	1024	_	—	—	—	—
552	3834	1026	—	_	_	_	—
555	4216	995	—	_	_	_	—
558	4317	962	—	_	_	_	—
561	3979	918	—	—	—	_	—
564	4332	873	—	_	—	_	_
567	4166	806	—	—	—	—	—
570	4378	745	—	—	—	—	—
573	4634	698	—	—	—	—	—
576	4533	646	—	—	—	—	
579	4670	593	—	—	—	—	—
582	5171	555	—	—	—	—	
585	5811	509	—	—	—	—	
588	6362	462	—	—	—	—	—
591	6853	418	—	—	—	—	—
594	7161	363	—	—	—	_	—
597	8372	321	—	—	—	_	—
600	9478	273	—	—	—	—	—
603	11456	254	_	_	_	_	_
				Co	ntinúa en	la siguient	te página

Tabla A.9. – Continuación.

Energía			Ang	$_{\rm sulación} \pm$	$= 2.5^{\circ}$		
[keV]	0.8°	30.8°	55.8°	65.8°	75.8°	90.8°	120.8°
606	13121	201	_	_	_	_	_
609	14864	175	_	_	—	_	—
612	17519	152	—	—	—	_	—
615	20689	131	_	_	—	—	—
618	23314	110	—	_	—	_	—
621	28996	95	_	_	—	_	—
624	33420	82	_	_	—	_	—
627	37896	56	_	_	_	_	—
630	44858	55	_	_	—	_	—
633	51924	33	_	_	—	_	_
636	56413	26	_	_	—	_	—
639	62659	15	_	_	—	_	—
642	68446	15	_	_	—	_	—
645	75687	7	_	_	—	_	—
648	79620	4	—	_	—	_	—
651	83923	8	_	_	—	_	—
654	86140	14	—	_	—	_	—
657	88109	26	—	—	—	_	—
660	89185	25	_	_	—	_	—
663	85321	41	—	_	—	_	—
666	83351	35	—	_	—	_	—
669	77904	51	—	—	—	_	—
672	73016	52	—	—	—	_	—
675	68810	43	_	_	—	_	—
678	61763	27	—	—	—	_	—
681	55649	20	_	_	—	_	—
684	49903	22	—	—	—	_	—
687	42306	21	_	_	_	_	_
690	36251	18	_	_	—	_	—
693	31107	11	_	_	_	_	_
696	26655	10	_	_	—	_	—
699	22426	10	_	_	_	_	_
702	18300	14	_	_	_	_	_
705	15686	10	_	_	_	_	_
708	13822		—	—	_	_	—
711	12087		_	_	_	_	_
714	10066		—	—	_	_	—
717	8831		_	_	_	_	_
720	7360		_	_	_	_	_
723	6912		_	_	_	_	_
700	6135		_	_	_	_	_

Tabla A.9. – Continuación.

Energía	Angulación $\pm 2.5^{\circ}$						
[keV]	0.8°	30.8°	55.8°	65.8°	75.8^{o}	90.8°	120.8°
729	5430		_	_	_	_	_
732	4988		—	—	—	—	_
735	4330		—	—	—	—	_
738	3889		—	—	—	—	—
741	3766		_	_	_	_	_
744	3770		—	—	—	—	_
747	3290		_	_	_	_	_
750	3201		—	—	—	—	_
753	2887		_	_	_	_	
756	2733		—	—	—	—	_
759	2234		_	_	_	_	_
762	2408		—	—	—	—	—
765	2156		_	_	_	_	_
768	1913		—	—	—	—	—
771	1734		_	_	_	_	_
774	1575		—	—	—	—	—
777	1503		—	—	—	—	—
780	1378		_	_	_	_	_
783	1406		—	—	—	—	—
786	1337		_	_	_	_	_
789	1227		—	—	—	—	—
792	1185		—	—	—	—	—
795	1179		—	—	—	—	_
798	1005		_	_	_	—	_
801	943		—	—	—	—	

Tabla A.9. – Continuación.

A.6.1. Coeficientes obtenidos para la función S(E) de los espectros a 55.8°, 65.8°, 75.8°, 90.8° y 120.8°

Para todos los espectros en las diferentes angulaciones, se presenta primero las tablas de coeficientes y luego las gráficas.

Tabla A.10. Coeficientes obtenidos para la función S(E) del espectro a 55.8° de angulación. Fuente: elaboración propia.

Coeficientes	
a_0	$3.675115434372550\mathrm{E}{+01}$
a_1	$1.089897233722750\mathrm{E}{+}01$
a_2	-2.176392409609440E-01
a_3	2.952586579150350E-03
a_4	-2.205650810593890E-05
a_5	8.917756278664710E-08
a_6	-1.963144279077750E-10
a_7	2.216928584818340E-13
a_8	-1.005862438170420E-16
A_0	35249
E_0	$427.16 \ keV$
$\Gamma_{(FWHM})$	$48.40 \ keV$

Tabla A.11. Coeficientes obtenidos para la función S(E) del espectro a 65.8° de angulación. Fuente: elaboración propia.

Coeficientes	
a_0	$1.160637092911270\mathrm{E}{+03}$
a_1	$-1.191040241843670\mathrm{E}{+02}$
a_2	$4.999794570855970\mathrm{E}{+00}$
a_3	-1.047409041277860E-01
a_4	1.285812030244680E-03
a_5	-9.959587685650660E-06
a_6	5.049315157048140E-08
a_7	-1.697048421659060E-10
a_8	3.744051192114990E-13
a_9	-5.207927244979300E-16
a_{10}	4.139438729714200E-19
a_{11}	-1.432581211033240E-22
A_0	34543
E_0	$368.70 \ keV$
$\Gamma_{(FWHM})$	50.75~keV

Coeficientes	
a_0	$-1.457987268691980\mathrm{E}{+01}$
a_1	$3.947742137218110\mathrm{E}{+00}$
a_2	-2.346438998694470E-02
a_3	4.903147584431110E-05
a_4	-3.640616623087390E-08
A_0	3625
E_0	$314.77 \ keV$
$\Gamma_{(FWHM})$	$43.42 \ keV$

Tabla A.12. Coeficientes obtenidos para la función S(E) del espectro a 75.8° de angulación. Fuente: elaboración propia.

Tabla A.13. Coeficientes obtenidos para la función S(E) del espectro a 90.8° de angulación. Fuente: elaboración propia.

Coeficientes	
a_0	$-9.987745315045800\mathrm{E}{+01}$
a_1	$1.161979576258540\mathrm{E}{+}01$
a_2	-2.783067275308850E-01
a_3	3.993861217837300E-03
a_4	-3.082156840197000E-05
a_5	1.260047157121290E-07
a_6	-2.577028570905040E-10
a_7	2.072718175227700E-13
$\overline{A_0}$	42885
E_0	$273.98 \ keV$
$\Gamma_{(FWHM})$	$38.93 \ keV$

Tabla A.14. Coeficientes obtenidos para la función S(E) del espectro a 120.8° de angulación. Fuente: elaboración propia.

Coeficientes	
a_0	$-2.488122961391030\mathrm{E}{+03}$
a_1	$3.696880793778140\mathrm{E}{+}02$
a_2	$-2.146136248261600\mathrm{E}{+01}$
a_3	6.598049730169470E-01
a_4	-1.207950942698230E-02
a_5	1.405748319785420E-04
a_6	-1.076919438921780E-06
a_7	5.498342071534760E-09
a_8	-1.851961464305090E-11
a_9	3.951009057204900E-14
a_{10}	-4.836743093596940E -17
a_{11}	2.587798520862870E-20
A_0	31776
E_0	$215.04 \ keV$
$\Gamma_{(FWHM})$	$29.36 \ keV$

